
An introduction to ICA
followed by:

EM Algorithms for ICA

Pierre Ablin
Parietal

Joint work with: F. Bach, JF. Cardoso & A. Gramfort

https://arxiv.org/abs/1805.10054

Parietal presentation, 2018

Introduction to ICA

Source separation: the cocktail party problem

Independent component analysis
Special case of source separation:

I Linear & instantaneous mixture
I “Square problem”: as many sources as sensors

x1 = 1.1s1 + 0.9s2 + 1.2s3

x2 = 0.5s1 + 0.8s2 + 2.2s3

x3 = 1.5s1 + 0.5s2 − 2.4s3

Problem formulation: ICA as a generative
model

I We observe p signals [x1, · · · , xp] = x ∈ Rp×1

Key assumption

There are p independent signals [s1, · · · , sp] = s ∈ Rp×1 and
A ∈ Rp×p invertible such that:

x = As

Problem formulation: ICA as a generative
model

I We observe p signals [x1, · · · , xp] = x ∈ Rp×1

Key assumption

There are p independent signals [s1, · · · , sp] = s ∈ Rp×1 and
A ∈ Rp×p invertible such that:

x = As

Problem formulation: ICA as a generative
model

I We observe p signals [x1, · · · , xp] = x ∈ Rp×1

Key assumption

There are p independent signals [s1, · · · , sp] = s ∈ Rp×1 and
A ∈ Rp×p invertible such that:

x = As

Problem formulation

x = As
Given some realizations of x, we want to recover A
and s.

Is it possible?

Standard indeterminations:
I No hope to recover sources scales

I Same for the ordering
I Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon ’94].

Is it possible?

Standard indeterminations:
I No hope to recover sources scales
I Same for the ordering

I Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon ’94].

Is it possible?

Standard indeterminations:
I No hope to recover sources scales
I Same for the ordering
I Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon ’94].

Is it possible?

Standard indeterminations:
I No hope to recover sources scales
I Same for the ordering
I Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon ’94].

A geometric viewpoint

In 2D (p = 2). n = 2000 points.

Sources Mixed observed signals

Density matters

Different densities lead to different patterns

Super-Gaussian Sub-Gaussian Gaussian

ICA in the real world

A cute example

ECG of a pregnant mother Recovered ICA sources

[Zarzoso ’97]

ICA on EEG-MEG data

ICA on fMRI

A matrix factorization
problem

Link with dictionary learning

Given n samples noted in matrix form X ∈ Rp×n

ICA: Find A ∈ Rp×p and S ∈ Rp×n such that X = AS.
I Perfect data fit (X = AS)
I Assumption of statistical independence on S

Dictionnary learning: Find D ∈ Rp×k and R ∈ Rk×n such that
X ' DR

I Approximate data fit (introduces a penalty ||X −DR||F in
the optimization)

I Assumption of sparsity on R

Link with dictionary learning

Given n samples noted in matrix form X ∈ Rp×n

ICA: Find A ∈ Rp×p and S ∈ Rp×n such that X = AS.
I Perfect data fit (X = AS)
I Assumption of statistical independence on S

Dictionnary learning: Find D ∈ Rp×k and R ∈ Rk×n such that
X ' DR

I Approximate data fit (introduces a penalty ||X −DR||F in
the optimization)

I Assumption of sparsity on R

Inference techniques

Maximum likelihood ICA

I x = As: generative model.
I Further assumption: fixed density. si ∼ d

Likelihood:

p(x|A) = 1
|det(A)|

p∏
i=1

d([A−1x]i)

Optimization problem

I Work with the unmixing matrix W = A−1

I Cost function `(x,W) = − log(p(x|W−1))

`(x,W) = − log|det(W)| −
p∑
i=1

log(d([Wx]i))

Expected risk:

L(W) = Ex[`(x,W)] = − log|det(W)| −
p∑
i=1

E[log(d([Wx]i))]

Empirical risk. Given n samples [x1, · · · ,xn] = X ∈ Rp×n:

Ln(W) = 1
n

n∑
j=1

`(xj ,W) = − log|det(W)|− 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

Optimization problem

I Work with the unmixing matrix W = A−1

I Cost function `(x,W) = − log(p(x|W−1))

`(x,W) = − log|det(W)| −
p∑
i=1

log(d([Wx]i))

Expected risk:

L(W) = Ex[`(x,W)] = − log|det(W)| −
p∑
i=1

E[log(d([Wx]i))]

Empirical risk. Given n samples [x1, · · · ,xn] = X ∈ Rp×n:

Ln(W) = 1
n

n∑
j=1

`(xj ,W) = − log|det(W)|− 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

Optimization problem

I Work with the unmixing matrix W = A−1

I Cost function `(x,W) = − log(p(x|W−1))

`(x,W) = − log|det(W)| −
p∑
i=1

log(d([Wx]i))

Expected risk:

L(W) = Ex[`(x,W)] = − log|det(W)| −
p∑
i=1

E[log(d([Wx]i))]

Empirical risk. Given n samples [x1, · · · ,xn] = X ∈ Rp×n:

Ln(W) = 1
n

n∑
j=1

`(xj ,W) = − log|det(W)|− 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

Optimization problem

I Work with the unmixing matrix W = A−1

I Cost function `(x,W) = − log(p(x|W−1))

`(x,W) = − log|det(W)| −
p∑
i=1

log(d([Wx]i))

Expected risk:

L(W) = Ex[`(x,W)] = − log|det(W)| −
p∑
i=1

E[log(d([Wx]i))]

Empirical risk. Given n samples [x1, · · · ,xn] = X ∈ Rp×n:

Ln(W) = 1
n

n∑
j=1

`(xj ,W) = − log|det(W)|− 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

Optimization problem 2

Objective of maximum-likelihood ICA: find

W = arg minL(W)

If you have a fixed dataset: find

W = arg minLn(W)

This is the problem solved by Infomax [Bell ’95]

Optimization problem 2

Objective of maximum-likelihood ICA: find

W = arg minL(W)

If you have a fixed dataset: find

W = arg minLn(W)

This is the problem solved by Infomax [Bell ’95]

Optimization problem 2

Objective of maximum-likelihood ICA: find

W = arg minL(W)

If you have a fixed dataset: find

W = arg minLn(W)

This is the problem solved by Infomax [Bell ’95]

Geometry of the problem

Ln(W) = − log|det(W)| − 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

I No closed form solution. Iterative algorithms
I Optimization on the set of invertible matrices

I Invariant by permutation of two rows of W
I Non-convex problem

Geometry of the problem

Ln(W) = − log|det(W)| − 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

I No closed form solution. Iterative algorithms
I Optimization on the set of invertible matrices
I Invariant by permutation of two rows of W

I Non-convex problem

Geometry of the problem

Ln(W) = − log|det(W)| − 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

I No closed form solution. Iterative algorithms
I Optimization on the set of invertible matrices
I Invariant by permutation of two rows of W
I Non-convex problem

Geometry of the problem

Ln(W) = − log|det(W)| − 1
n

p∑
i=1

n∑
j=1

log(d([WX]ij))

I No closed form solution. Iterative algorithms
I Optimization on the set of invertible matrices
I Invariant by permutation of two rows of W
I Non-convex problem

Infomax

Stochatic gradient descent:

Wt+1 = Wt − ρ∇Ln(Wt)

The gradient is computed on a mini-batch of samples.

Issues
I Choosing ρ is critical and difficult (non-convex problem)
I No safe rule / descent guarantee
I Too small : slow convergence
I Too large : blow-up
I Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method,
especially for large n.

Infomax

Stochatic gradient descent:

Wt+1 = Wt − ρ∇Ln(Wt)

The gradient is computed on a mini-batch of samples.

Issues
I Choosing ρ is critical and difficult (non-convex problem)
I No safe rule / descent guarantee
I Too small : slow convergence
I Too large : blow-up
I Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method,
especially for large n.

Infomax

Stochatic gradient descent:

Wt+1 = Wt − ρ∇Ln(Wt)

The gradient is computed on a mini-batch of samples.

Issues
I Choosing ρ is critical and difficult (non-convex problem)
I No safe rule / descent guarantee
I Too small : slow convergence
I Too large : blow-up
I Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method,
especially for large n.

Proposed method

I Stochastic, so fast
I Guaranteed descent at each iteration
I One iteration is as costly as SGD

EM algorithms for ICA

Super-Gaussian densities

I Define G(y) = − log(d(y)).
I Ln(W) = − log|det(W)|+ 1

n

∑p
i=1

∑n
j=1G([WX]ij)

Key assumption : d is super-Gaussian.

G(
√
·) is concave.

I This is the case for most brain sources

4 2 0 2 4
0

1

2

3

4

G

Main idea: surrogate functions
G has a quadratic surrogate at each point.

4 2 0 2 4
0

1

2

3

4 G
Quadratic surrogate

G(y) = min
u≥0

uy2

2 + f(u)

I f is an unimportant function.
I minimum reached for an unique value u∗(y) = G′(y)

y .

Main idea: surrogate functions
G has a quadratic surrogate at each point.

4 2 0 2 4
0

1

2

3

4 G
Quadratic surrogate

G(y) = min
u≥0

uy2

2 + f(u)

I f is an unimportant function.
I minimum reached for an unique value u∗(y) = G′(y)

y .

Main idea: surrogate functions
G has a quadratic surrogate at each point.

4 2 0 2 4
0

1

2

3

4 G
Quadratic surrogate

G(y) = min
u≥0

uy2

2 + f(u)

I f is an unimportant function.
I minimum reached for an unique value u∗(y) = G′(y)

y .

Surrogate risk

G(y) = min
u≥0

uy2

2 + f(u)

`(x,W) = − log|det(W)|+
p∑
i=1

G([Wx]i)

Introduce dual variables u ∈ Rp×1:

˜̀(x,W,u) = − log|det(W)|+ 1
2

p∑
i=1

ui [Wx]2i +
p∑
i=1

f(ui)

I Much simpler dependence in W !

Surrogate loss

G(y) = min
u≥0

uy2

2 + f(u)

Ln(W) = − log|det(W)|+ 1
n

p∑
i=1

n∑
j=1

G([WX]ij)

Introduce dual variables U ∈ Rp×n:

L̃n(W,U) = − log|det(W)|+ 1
2n

p∑
i=1

n∑
j=1

U ij [WX]2ij+
1
n

p∑
i=1

n∑
j=1

f(U ij)

Majorization properties

Ln(W) = − log|det(W)|+ 1
n

p∑
i=1

n∑
j=1

G([WX]ij)

L̃n(W,U) = − log|det(W)|+ 1
2n

p∑
i=1

n∑
j=1

U ij [WX]2ij+
1
n

p∑
i=1

n∑
j=1

f(U ij)

I Ln(W) ≤ L̃n(W,U), with equality iif U = u∗(WX)
I W minimizes Ln if and only if (W,u∗(WX)) minimizes L̃n.

Alternate minimization

Idea:

I For a fixed U , minimize L̃n(W, U) w.r.t. W

I For a fixed W , minimize L̃n(W, U) w.r.t. U

Minimization in W

L̃n(W,U) = − log|det(W)|+ 1
2n

p∑
i=1

n∑
j=1

Uij [WX]2ij + · · ·

Quadratic function in the rows of W :

L̃n(W,U) = − log|det(W)|+ 1
2

p∑
i=1

Wi:A
iW>i: + · · ·

Sufficient statistics:

Aikl = 1
n

n∑
j=1

UijXkjXlj

Minimization in W

L̃n(W,U) = − log|det(W)|+ 1
2n

p∑
i=1

n∑
j=1

Uij [WX]2ij + · · ·

Quadratic function in the rows of W :

L̃n(W,U) = − log|det(W)|+ 1
2

p∑
i=1

Wi:A
iW>i: + · · ·

Sufficient statistics:

Aikl = 1
n

n∑
j=1

UijXkjXlj

Minimization in W

L̃n(W,U) = − log|det(W)|+ 1
2n

p∑
i=1

n∑
j=1

Uij [WX]2ij + · · ·

Quadratic function in the rows of W :

L̃n(W,U) = − log|det(W)|+ 1
2

p∑
i=1

Wi:A
iW>i: + · · ·

Sufficient statistics:

Aikl = 1
n

n∑
j=1

UijXkjXlj

Minimization in W 2

L̃n(W,U) = − log|det(W)|+ 1
2

p∑
i=1

Wi:A
iW>i: + · · ·

Minimization possible w.r.t. a multiplicative update of Wi::
W ←MW where M is identity except for its i-th row which
equals m ∈ Rp.

W.r.t m, L̃n(MW,U) is of the form − log(|mi|) + 1
2mKm>,

K = WAiW> ∈ Rp×p.

Minimization in closed form:

m = K−1
i:√

(K−1)ii

Minimization in W 2

L̃n(W,U) = − log|det(W)|+ 1
2

p∑
i=1

Wi:A
iW>i: + · · ·

Minimization possible w.r.t. a multiplicative update of Wi::
W ←MW where M is identity except for its i-th row which
equals m ∈ Rp.

W.r.t m, L̃n(MW,U) is of the form − log(|mi|) + 1
2mKm>,

K = WAiW> ∈ Rp×p. Minimization in closed form:

m = K−1
i:√

(K−1)ii

Minimization in W 2

L̃n(W,U) = − log|det(W)|+ 1
2

p∑
i=1

Wi:A
iW>i: + · · ·

Minimization possible w.r.t. a multiplicative update of Wi::
W ←MW where M is identity except for its i-th row which
equals m ∈ Rp.

W.r.t m, L̃n(MW,U) is of the form − log(|mi|) + 1
2mKm>,

K = WAiW> ∈ Rp×p. Minimization in closed form:

m = K−1
i:√

(K−1)ii

Stochastic minimization in U

We only need the Ai’s to minimize in W .

Aikl = 1
n

n∑
j=1

UijXkjXlj

Ai = 1
n

n∑
j=1

Uijxjx>j

I Accumulate the Ai’s (in a stochastic way)

Stochastic minimization in U

We only need the Ai’s to minimize in W .

Aikl = 1
n

n∑
j=1

UijXkjXlj

Ai = 1
n

n∑
j=1

Uijxjx>j

I Accumulate the Ai’s (in a stochastic way)

Incremental algorithm

Finite sum setting: n fixed, minimize L̃n.

Ai = 1
n

n∑
j=1

Uijxjx>j

Need a memory Umem ∈ R p×n

I Take a sample xj at random
I Compute Unew

:j = u∗(Wxj)
I Update Ai ← Ai + 1

n(Unew
ij − Umem

ij)xjx>j
I Update the memory: Umem

:j = Unew
:j

Enforces Ai = 1
n

∑n
j=1 U

mem
ij xjx>j at all time.

Incremental algorithm

Finite sum setting: n fixed, minimize L̃n.

Ai = 1
n

n∑
j=1

Uijxjx>j

Need a memory Umem ∈ R p×n

I Take a sample xj at random

I Compute Unew
:j = u∗(Wxj)

I Update Ai ← Ai + 1
n(Unew

ij − Umem
ij)xjx>j

I Update the memory: Umem
:j = Unew

:j

Enforces Ai = 1
n

∑n
j=1 U

mem
ij xjx>j at all time.

Incremental algorithm

Finite sum setting: n fixed, minimize L̃n.

Ai = 1
n

n∑
j=1

Uijxjx>j

Need a memory Umem ∈ R p×n

I Take a sample xj at random
I Compute Unew

:j = u∗(Wxj)

I Update Ai ← Ai + 1
n(Unew

ij − Umem
ij)xjx>j

I Update the memory: Umem
:j = Unew

:j

Enforces Ai = 1
n

∑n
j=1 U

mem
ij xjx>j at all time.

Incremental algorithm

Finite sum setting: n fixed, minimize L̃n.

Ai = 1
n

n∑
j=1

Uijxjx>j

Need a memory Umem ∈ R p×n

I Take a sample xj at random
I Compute Unew

:j = u∗(Wxj)
I Update Ai ← Ai + 1

n(Unew
ij − Umem

ij)xjx>j

I Update the memory: Umem
:j = Unew

:j

Enforces Ai = 1
n

∑n
j=1 U

mem
ij xjx>j at all time.

Incremental algorithm

Finite sum setting: n fixed, minimize L̃n.

Ai = 1
n

n∑
j=1

Uijxjx>j

Need a memory Umem ∈ R p×n

I Take a sample xj at random
I Compute Unew

:j = u∗(Wxj)
I Update Ai ← Ai + 1

n(Unew
ij − Umem

ij)xjx>j
I Update the memory: Umem

:j = Unew
:j

Enforces Ai = 1
n

∑n
j=1 U

mem
ij xjx>j at all time.

Incremental algorithm

Finite sum setting: n fixed, minimize L̃n.

Ai = 1
n

n∑
j=1

Uijxjx>j

Need a memory Umem ∈ R p×n

I Take a sample xj at random
I Compute Unew

:j = u∗(Wxj)
I Update Ai ← Ai + 1

n(Unew
ij − Umem

ij)xjx>j
I Update the memory: Umem

:j = Unew
:j

Enforces Ai = 1
n

∑n
j=1 U

mem
ij xjx>j at all time.

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

Ai = 1
n

n∑
j=1

Uijxjx>j

No more memory

I Fetch a sample x
I Compute u = u∗(Wx)
I Update Ai ← (1− ρ(n))Ai + ρ(n)uixx>

I Choose ρ(n) = 1
nα , α ∈ [1

2 , 1]

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

Ai = 1
n

n∑
j=1

Uijxjx>j

No more memory

I Fetch a sample x

I Compute u = u∗(Wx)
I Update Ai ← (1− ρ(n))Ai + ρ(n)uixx>

I Choose ρ(n) = 1
nα , α ∈ [1

2 , 1]

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

Ai = 1
n

n∑
j=1

Uijxjx>j

No more memory

I Fetch a sample x
I Compute u = u∗(Wx)

I Update Ai ← (1− ρ(n))Ai + ρ(n)uixx>

I Choose ρ(n) = 1
nα , α ∈ [1

2 , 1]

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

Ai = 1
n

n∑
j=1

Uijxjx>j

No more memory

I Fetch a sample x
I Compute u = u∗(Wx)
I Update Ai ← (1− ρ(n))Ai + ρ(n)uixx>

I Choose ρ(n) = 1
nα , α ∈ [1

2 , 1]

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

Ai = 1
n

n∑
j=1

Uijxjx>j

No more memory

I Fetch a sample x
I Compute u = u∗(Wx)
I Update Ai ← (1− ρ(n))Ai + ρ(n)uixx>

I Choose ρ(n) = 1
nα , α ∈ [1

2 , 1]

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

Ai = 1
n

n∑
j=1

Uijxjx>j

No more memory

I Fetch a sample x
I Compute u = u∗(Wx)
I Update Ai ← (1− ρ(n))Ai + ρ(n)uixx>

I Choose ρ(n) = 1
nα , α ∈ [1

2 , 1]

So far...

I Stochastic, so fast

I Guaranteed descent at each iteration
I One iteration is as costly as SGD

So far...

I Stochastic, so fast
I Guaranteed descent at each iteration

I One iteration is as costly as SGD

So far...

I Stochastic, so fast
I Guaranteed descent at each iteration
I One iteration is as costly as SGD

So far...

I Stochastic, so fast
I Guaranteed descent at each iteration
I One iteration is as costly as SGD

Computation cost

SGD: Computing the gradient costs p2 operations /sample

So far: Updating one matrix Ai costs p(p+1)
2 operations/sample

→ p2(p+1)
2 operations/sample

Idea: only update q < p matrices per sample.

Computation cost

SGD: Computing the gradient costs p2 operations /sample

So far: Updating one matrix Ai costs p(p+1)
2 operations/sample

→ p2(p+1)
2 operations/sample

Idea: only update q < p matrices per sample.

Computation cost

SGD: Computing the gradient costs p2 operations /sample

So far: Updating one matrix Ai costs p(p+1)
2 operations/sample

→ p2(p+1)
2 operations/sample

Idea: only update q < p matrices per sample.

Diminishing the computation cost

Update q < p matrices Ai per sample.

Incremental algorithm
I Compute the dual gap associated with each update:

gap(W,Uold
ij) = 1

2U
old
ij [WX]2ij + f(Uold

ij)−G([WX]ij)

I Measures the decrease of L̃n associated with the updating to
the i-th matrix

I Update the q matrix associated with the largest decreases

Online algorithm
I Update q matrices at random

Diminishing the computation cost

Update q < p matrices Ai per sample.

Incremental algorithm
I Compute the dual gap associated with each update:

gap(W,Uold
ij) = 1

2U
old
ij [WX]2ij + f(Uold

ij)−G([WX]ij)

I Measures the decrease of L̃n associated with the updating to
the i-th matrix

I Update the q matrix associated with the largest decreases

Online algorithm
I Update q matrices at random

Diminishing the computation cost

Update q < p matrices Ai per sample.

Incremental algorithm
I Compute the dual gap associated with each update:

gap(W,Uold
ij) = 1

2U
old
ij [WX]2ij + f(Uold

ij)−G([WX]ij)

I Measures the decrease of L̃n associated with the updating to
the i-th matrix

I Update the q matrix associated with the largest decreases

Online algorithm
I Update q matrices at random

Diminishing the computation cost

Update q < p matrices Ai per sample.

Incremental algorithm
I Compute the dual gap associated with each update:

gap(W,Uold
ij) = 1

2U
old
ij [WX]2ij + f(Uold

ij)−G([WX]ij)

I Measures the decrease of L̃n associated with the updating to
the i-th matrix

I Update the q matrix associated with the largest decreases

Online algorithm
I Update q matrices at random

Diminishing the computation cost

Update q < p matrices Ai per sample.

Incremental algorithm
I Compute the dual gap associated with each update:

gap(W,Uold
ij) = 1

2U
old
ij [WX]2ij + f(Uold

ij)−G([WX]ij)

I Measures the decrease of L̃n associated with the updating to
the i-th matrix

I Update the q matrix associated with the largest decreases

Online algorithm
I Update q matrices at random

All good!

I Stochastic, so fast
I Guaranteed descent at each iteration
I One iteration is as costly as SGD (with q = 2)

Results

Convergence measures

I Loss on left-out data
I Amari distance Requires that the true mixing matrix A is

available. For a matrix W , compute R = WA and
d =

∑p
i=1(

∑p
j=1

R2
ij

maxlR2
il
− 1) +

∑p
i=1(

∑p
j=1

R2
ji

maxlR2
lj
− 1).

Cancels iif W−1 and A are equal up to permutation and scale.

I Gradient norm: gradient of L̃n. Only meaningful for the
finite-sum setting.

Convergence measures

I Loss on left-out data
I Amari distance Requires that the true mixing matrix A is

available. For a matrix W , compute R = WA and
d =

∑p
i=1(

∑p
j=1

R2
ij

maxlR2
il
− 1) +

∑p
i=1(

∑p
j=1

R2
ji

maxlR2
lj
− 1).

Cancels iif W−1 and A are equal up to permutation and scale.
I Gradient norm: gradient of L̃n. Only meaningful for the

finite-sum setting.

Convergence measures

I Loss on left-out data
I Amari distance Requires that the true mixing matrix A is

available. For a matrix W , compute R = WA and
d =

∑p
i=1(

∑p
j=1

R2
ij

maxlR2
il
− 1) +

∑p
i=1(

∑p
j=1

R2
ji

maxlR2
lj
− 1).

Cancels iif W−1 and A are equal up to permutation and scale.
I Gradient norm: gradient of L̃n. Only meaningful for the

finite-sum setting.

Other algorithms

I SGD (i.e. Infomax). Step size ρ = β
tα hand tuned to get the

best convergence.
I Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).

Step size ρ = β
tα hand tuned to get the best convergence.

I Full batch second order methods (i.e. Picard !) Works
with a line search technique.

I Full batch EM

Other algorithms

I SGD (i.e. Infomax). Step size ρ = β
tα hand tuned to get the

best convergence.
I Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).

Step size ρ = β
tα hand tuned to get the best convergence.

I Full batch second order methods (i.e. Picard !) Works
with a line search technique.

I Full batch EM

Other algorithms

I SGD (i.e. Infomax). Step size ρ = β
tα hand tuned to get the

best convergence.
I Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).

Step size ρ = β
tα hand tuned to get the best convergence.

I Full batch second order methods (i.e. Picard !) Works
with a line search technique.

I Full batch EM

Other algorithms

I SGD (i.e. Infomax). Step size ρ = β
tα hand tuned to get the

best convergence.
I Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).

Step size ρ = β
tα hand tuned to get the best convergence.

I Full batch second order methods (i.e. Picard !) Works
with a line search technique.

I Full batch EM

Simulated data

p = 10, n = 106 in the finite sum setting, 107 in the online setting.
S ∈ Rp×n generated with density d(x) = 1

2 exp(−|x|). X = AS

EEG data

p = 30, n = 106

Future work

I Find an efficient way to code the algorithm (right now I have
to take pretty big mini-batches to be competitive with SGD)

I Find a better policy to choose which matrices Ai to update in
the streaming setting

I The M-step is costly: compute K = WAiW> ∈ Rp×p, and
m = K−1

i:√
(K−1)ii

. Can we make it faster by accumulating the

(Ai)−1 instead of the Ai?

Future work

I Find an efficient way to code the algorithm (right now I have
to take pretty big mini-batches to be competitive with SGD)

I Find a better policy to choose which matrices Ai to update in
the streaming setting

I The M-step is costly: compute K = WAiW> ∈ Rp×p, and
m = K−1

i:√
(K−1)ii

. Can we make it faster by accumulating the

(Ai)−1 instead of the Ai?

Future work

I Find an efficient way to code the algorithm (right now I have
to take pretty big mini-batches to be competitive with SGD)

I Find a better policy to choose which matrices Ai to update in
the streaming setting

I The M-step is costly: compute K = WAiW> ∈ Rp×p, and
m = K−1

i:√
(K−1)ii

. Can we make it faster by accumulating the

(Ai)−1 instead of the Ai?

Thanks for your attention!

