An introduction to ICA
followed by:
EM Algorithms for ICA

Pierre Ablin
Parietal

Joint work with: F. Bach, JF. Cardoso & A. Gramfort

https://arxiv.org/abs/1805.10054

Parietal presentation, 2018

Introduction to ICA

Source separation: the cocktail party problem

Independent component analysis

Special case of source separation:
» Linear & instantaneous mixture
> “Square problem”: as many sources as sensors

True Sources Observations (mixed signal)

of N °’WWM

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

I = 1.181 + 0.982 + 1.283

T = 0.581 + 0.882 + 2.283
x3 = 1.5s1 + 0.5s9 — 2.4s3

Problem formulation: ICA as a generative
model

» We observe p signals [r1,- - ,z,] = x € RP*!

Problem formulation: ICA as a generative
model

» We observe p signals [r1,- - ,z,] = x € RP*!

Key assumption

There are p independent signals [sq, - , sp] =s € RP*! and
A € RP*P jnvertible such that:

Problem formulation: ICA as a generative
model

» We observe p signals [r1,- - ,z,] = x € RP*!

Key assumption

There are p independent signals [sq, - , sp] =s € RP*! and
A € RP*P jnvertible such that:

X = As

Problem formulation

X = As

Given some realizations of x, we want to recover A
and s.

Is it possible?

Standard indeterminations:

Is it possible?

Standard indeterminations:

» No hope to recover sources scales

Is it possible?

Standard indeterminations:
» No hope to recover sources scales

» Same for the ordering

Is it possible?

Standard indeterminations:
» No hope to recover sources scales
» Same for the ordering

» Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon '94].

A geometric viewpoint

In 2D (p = 2). n = 2000 points.

Sources Mixed observed signals

Density matters

Different densities lead to different patterns

Super-Gaussian Sub-Gaussian Gaussian

ICA in the real world

A cute

ECG of a pregnant mother

10—
0
g
0
10—
0

o . .
W—————————T—
0

spl— LT . .
W
0

o —————————
0

_wm 1 l 1 1 1 -1 1
0

0 T T
0

g
0 203 4 5 6 7 8 9 10

me(s)

[Zarzoso '97]

example

Recovered ICA sources

10; T T T T T T T —
iy |
RN RS RARRRE
=V

VGLAv T S vvv!
L0 0 L O L
0

—
LI LA L LV LA
0

5 == e i —m—
0

S TR 1 L L TR
10 T T T R I
0!

—
i o
o 1t 2 3 4 §5 6 7 8 9 10

time (s)

ICA on EEG-MEG data

Q) ° ol
> F & @ '\’\Q’
9 & ¢

S (," (}
& & 0)\& s & & ¢
Selcted T T 3 L0 W W 0
Channels MM J\W'A" W
WJL Letter
On
M
M

PO WA W W WA, 0
DTS PN YO Wm
[N

bttt S o gt s bl
ol s ol Wiy I"V
bt o A St S U st s NN
S A b A i o g M A
Wt e s o i st s
L el At s s Al u+ ’5
|M &MMWMMMMMJL) IC3
mm") A))\ - 'L
)
i teriad ety s o Q
i .,. s b
vt ot~ o
s g P Lt

=}

RSN RO 9 A S T A A
H MGl A A A H

1 2 3 45 6 7 8 9 1011 12 13 14
IC55 Time (s) IC12

8]
©

OO®®D
il
B

6
IC6 VI i sy VAVA\/AV ol VAVM il \
a)
Aol sl)
Ic7
K

ICA on fMRI

A matrix factorization
problem

Link with dictionary learning

Given n samples noted in matrix form X € RP*™

ICA: Find A € RP*P and S € RP*"™ such that X = AS.
> Perfect data fit (X[=]AS)

» Assumption of statistical independence on S

Link with dictionary learning

Given n samples noted in matrix form X € RP*™

ICA: Find A € RP*P and S € RP*"™ such that X = AS.
> Perfect data fit (X[=]AS)

» Assumption of statistical independence on S

Dictionnary learning: Find D € RP** and R € R*¥*" such that
X ~DR

» Approximate data fit (introduces a penalty || X — DR||p in
the optimization)

» Assumption of sparsity on R

Inference techniques

Maximum likelihood ICA

» x = As: generative model.

» Further assumption: fixed density.

Likelihood:

L d(A X))

P = ey 1

Optimization problem

» Work with the unmixing matrix W = A~!
» Cost function £(x, W) = —log(p(x|W 1))

Optimization problem

» Work with the unmixing matrix W = A~!
» Cost function £(x, W) = —log(p(x|W 1))

{(x,W) = —log|det(W)| = _ log(d([Wx];))
i=1

Optimization problem

» Work with the unmixing matrix W = A~!
» Cost function £(x, W) = —log(p(x|W 1))

{(x,W) = —log|det(W)| = _ log(d([Wx];))
i=1

Expected risk:

L(W) = Bx[£(x,W)] = — logldet(W)| — 3 Ellog(d([Wx];))]

Optimization problem

» Work with the unmixing matrix W = A~!
» Cost function £(x, W) = —log(p(x|W 1))

p
(x, W) = —log|det(W)| — Zlog(d([WX
Expected risk:

L(W) = Bx[£(x,W)] = — logldet(W)| — 3 Ellog(d([Wx];))]

Empirical risk. Given n samples [x1, - ,x,] = X € RP*"™:

lZex], W) = —log|det(W |——ZZlog (W X]i;))
=1

11]1

3

Optimization problem 2

Objective of maximum-likelihood ICA: find

W = argmin L(W)

Optimization problem 2

Objective of maximum-likelihood ICA: find
W = arg min L(W)
If you have a fixed dataset: find

W = argmin £, (W)

Optimization problem 2

Objective of maximum-likelihood ICA: find
W = arg min L(W)

If you have a fixed dataset: find
W = argmin £, (W)

This is the problem solved by Infomax [Bell '95]

Geometry of the problem

L,(W) = —log|det(W)| — — ZZlog (W X]i;))
i=1j=1

» No closed form solution. lterative algorithms

Geometry of the problem

L,(W) = —log|det(W)| — — ZZlog (W X]i;))
i=1j=1

» No closed form solution. lterative algorithms

» Optimization on the set of invertible matrices

Geometry of the problem

L,(W) = —log|det(W)| — — ZZlog (W X]i;))
i=1j=1

» No closed form solution. lterative algorithms
» Optimization on the set of invertible matrices

> Invariant by permutation of two rows of W

v

v

Geometry of the problem

L, (W) = —log|det(W)| — — ZZlog (W X]i;))
i=1j=1

No closed form solution. lterative algorithms
Optimization on the set of invertible matrices
Invariant by permutation of two rows of W

Non-convex problem

Infomax

Stochatic gradient descent:

Wi =Wy — pV£n(Wt)

The gradient is computed on a mini-batch of samples.

Infomax

Stochatic gradient descent:

Wi =Wy — pV£n(Wt)

The gradient is computed on a mini-batch of samples.

Issues

» Choosing p is critical and difficult (non-convex problem)

v

No safe rule / descent guarantee

v

Too small : slow convergence

v

Too large : blow-up

v

Line-search is hard in a stochastic setting

Infomax

Stochatic gradient descent:

Wi =Wy — pV£n(Wt)

The gradient is computed on a mini-batch of samples.

Issues
» Choosing p is critical and difficult (non-convex problem)
» No safe rule / descent guarantee
> Too small : slow convergence
» Too large : blow-up
> Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method,
especially for large n.

Proposed method

» Stochastic, so fast
» Guaranteed descent at each iteration

» One iteration is as costly as SGD

EM algorithms for ICA

Super-Gaussian densities

» Define G(y) = —log(d(y)).
> Lo(W) = —log|det(W)| + 3 30 S7-y G(IWX]yy)
Key assumption : d is super-Gaussian.

G(+/*) is concave.

» This is the case for most brain sources

Main idea: surrogate functions

G has a quadratic surrogate at each point.

— G
——— Quadratic surrogate

Main idea: surrogate functions

G has a quadratic surrogate at each point.

— G
——— Quadratic surrogate

Main idea: surrogate functions

G has a quadratic surrogate at each point.

— G
——— Quadratic surrogate

G(y) = min % + f(u)

» f is an unimportant function.

!
» minimum reached for an unique value u*(y) = GT(y)

Surrogate risk

2
Gy) = glzig % + f(u)

U(x, W) = —log|det(W)| + Z:G([WX]Z)

Introduce dual variables u € RP*!:

P
{(x,W,u) = —log|det(W)| + %Zul (Wx]? + Zf(ui)
i=1 i=1

» Much simpler dependence in W' !

Surrogate loss

Introduce dual variables U € RP*";

1 1&
La(W.U) = ~logldet(W)|+5 - 3 > Uiy (WX 33 f(Uy)
i=1j=1 i=1j=1

Majorization properties

£.(W) =~ logldet (W) + -3 3" G(WX]y)
i=1 j=1
Ln(W,U) = —log|det(W)|+-— > an Uij [WX]%—#—% > znj f(U3)
i=1j=1 i=1j=1

> L, (W) < L,(W,U), with equality iif U = u*(WX)
» W minimizes £, if and only if (W, u*(W X)) minimizes L,,.

Alternate minimization

Idea:

» For a fixed U, minimize £,,(W,U) w.rt. W
» For a fixed W, minimize £,(W,U) w.r.t. U

Minimization in W

P n

5 1
i=1j=1

Minimization in W

. 1 K&
Lo(W,U) = —logldet(W)| + — > S Uy WX]Z + -

2n i=1j=1

Quadratic function in the rows of W:

1< ,
La(W,U) = —log|det(W)| + S Wi AW + -
=1

Minimization in W

p n

5 1
L,(W,U) = —log|det(W)| + o Z Z Uij [WX]% 4.
i=1j=1

Quadratic function in the rows of W:

1< ,
La(W,U) = —log|det(W)| + S Wi AW + -
=1

Sufficient statistics:

. 1>
M= > UiiXkiXi
j=1

Minimization in W 2

- 1< .

Lo(W,U) = —log|det(W)| + 3 ST Wi AW + -
i=1

Minimization possible w.r.t. a multiplicative update of W;.:

W < MW where M is identity except for its i-th row which

equals m € RP,

Minimization in W 2

- 1< .
Lo(W,U) = —log|det(W)| + 3 ST Wi AW + -
i=1
Minimization possible w.r.t. a multiplicative update of W;.:
W < MW where M is identity except for its i-th row which
equals m € RP,

W.rt m, £,(MW,U) is of the form — log(|m;|) + smKm',
K=WAWT e RP*P.

Minimization in W 2

- 1< A
Lo(W,U) = —log|det(W)| + 3 ST Wi AW + -
i=1
Minimization possible w.r.t. a multiplicative update of W;.:
W < MW where M is identity except for its i-th row which
equals m € RP,

W.rt m, £,(MW,U) is of the form —log(|m;|) + smKm ",
K = WA'WT € RP*P. Minimization in closed form:

Stochastic minimization in U

We only need the A%'s to minimize in W.

A 12
j=1

I L
i __ 2: [
A —E UZ]Xij
J=1

Stochastic minimization in U

We only need the A%'s to minimize in W.

) 1
=D Uiy X Xy
j=1

1 &
i __ [
A = - E Uijx;x;
j=1

» Accumulate the A%'s (in a stochastic way)

Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1
T __ R
A = - E U”xjxj
i=1

Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1
T __ R
A = - E U”xjxj
i=1

Need a memory UMM € R P*"

Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1 T
AZ = — Z Uinij
n 4
J=1
Need a memory UMM € R P*"

» Take a sample x; at random

Incremental algorithm

Finite sum setting: n fixed, minimize £,.
Al = lzn:U-x‘x—-r
Cop = T
J=1
Need a memory UMM € R P*"

» Take a sample x; at random
» Compute U™ = u*(Wx;)

Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1 T
AZ = — Z Uinij
n 4
J=1
Need a memory UMM € R P*"

» Take a sample x; at random
» Compute U™ = u*(Wx;)

> Update A’ = A’ + L(UP — UPe™)x;x]

Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1
i R
A = - E U,]xjxj
i=1

Need a memory UMM € R P*"

v

Take a sample x; at random
Compute U = u*(Wx;)
Update A" <~ A’ + L(UP™ — UPe™)x;x]

J
Update the memory: UT™ = U™

v

v

v

i 1 n memy, .« | .
Enforces A" = - > 7%, U;7*"x;x; at all time.

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

i __ R
A = - E UijX;jX,;
j:l

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

i __ R
A = - E UijX;jX,;
j:l

No more memory

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

. 1
i __ R
At = - E UijX;X;
j=1
No more memory

> Fetch a sample x

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

. 1
i __ R
At = - E UijX;X;
j=1
No more memory

> Fetch a sample x
» Compute u = u*(Wx)

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

. 1
i __ R
At = - E UijX;X;
j=1
No more memory

> Fetch a sample x
» Compute u = u*(Wx)
» Update A’ + (1 — p(n)) A" + p(n)u;xx "

Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

. 1
i __ R
At = - E UijX;X;
j=1
No more memory

> Fetch a sample x
» Compute u = u*(Wx)
» Update A’ + (1 — p(n)) A" + p(n)u;xx "

» Choose p(n) = =, o € [3,1]

So far...

So far...

» Stochastic, so fast

So far...

» Stochastic, so fast

» Guaranteed descent at each iteration

So far...

» Stochastic, so fast

» Guaranteed descent at each iteration

» Oreiteration i v 25 SGE

Computation cost

SGD: Computing the gradient costs p? operations /sample

Computation cost

SGD: Computing the gradient costs p? operations /sample

So far: Updating one matrix A? costs p(p72+1)

p+)

operations/sample

— P+l operations/sample

Computation cost

SGD: Computing the gradient costs p? operations /sample

So far: Updating one matrix A’ costs p(p72+1) operations/sample

— B (p+) operations/sample

Idea: only update ¢ < p matrices per sample.

Diminishing the computation cost

Update ¢ < p matrices A* per sample.

Incremental algorithm

Diminishing the computation cost

Update ¢ < p matrices A* per sample.

Incremental algorithm

» Compute the dual gap associated with each update:

gap(W,US) = UM [WX]2 + f(US9) — G(WX]y)

)

Diminishing the computation cost

Update ¢ < p matrices A* per sample.

Incremental algorithm

» Compute the dual gap associated with each update:

gap(W,US) = UM [WX]2 + f(US9) — G(WX]y)

)

» Measures the decrease of £~n associated with the updating to
the i-th matrix

Diminishing the computation cost

Update ¢ < p matrices A* per sample.

Incremental algorithm

» Compute the dual gap associated with each update:

gap(W,US) = UM [WX]2 + f(US9) — G(WX]y)

)

» Measures the decrease of £~n associated with the updating to
the i-th matrix

» Update the g matrix associated with the largest decreases

Diminishing the computation cost

Update ¢ < p matrices A* per sample.

Incremental algorithm

» Compute the dual gap associated with each update:

gap(W,US) = UM [WX]2 + f(US9) — G(WX]y)

)

» Measures the decrease of £~n associated with the updating to
the i-th matrix

» Update the g matrix associated with the largest decreases
Online algorithm

» Update ¢ matrices at random

All good!

» Stochastic, so fast
» Guaranteed descent at each iteration

» One iteration is as costly as SGD (with ¢ = 2)

Results

Convergence measures

» Loss on left-out data

Convergence measures

» Loss on left-out data

» Amari distance Requires that the true mixing matrix A is

available. For a matrix W, compute R = W A and
R2

R,
d=37_ (0 lmale2 — 1)+ (- 1W—1)

Cancels iif W~! and A are equal up to permutation and scale.

Convergence measures

» Loss on left-out data

» Amari distance Requires that the true mixing matrix A is

available. For a matrix W, compute R = W A and
R2

R
d=3"_ 1(Z] 1male2 -1)+ X 1(2] 1m—1)

Cancels iif W~! and A are equal up to permutation and scale.

» Gradient norm: gradient of £,,. Only meaningful for the
finite-sum setting.

Other algorithms

» SGD (i.e. Infomax). Step size p = tﬁa hand tuned to get the
best convergence.

Other algorithms

» SGD (i.e. Infomax). Step size p = tﬁa hand tuned to get the
best convergence.

» Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).
Step size p = tﬁa hand tuned to get the best convergence.

Other algorithms

» SGD (i.e. Infomax). Step size p = tﬁa hand tuned to get the
best convergence.

» Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).
Step size p = tﬁa hand tuned to get the best convergence.

» Full batch second order methods (i.e. Picard !) Works
with a line search technique.

Other algorithms

SGD (i.e. Infomax). Step size p = tﬁa hand tuned to get the
best convergence.

Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).
Step size p = tﬁa hand tuned to get the best convergence.

Full batch second order methods (i.e. Picard !) Works
with a line search technique.

Full batch EM

Simulated data

p =10, n = 10% in the finite sum setting, 107 in the online setting.
S € RP*™ generated with density d(z) = 5 exp(—|z|). X = AS

= |ncremental EM (proposed) s SGD m— SAG = FR-Newton me Full-batch EM
8
S] 100 | £ 10° 4
5 1.0 4 5 15
g £ 102 £ 102
@ o 5]
E 0.5 4 = S 4
S € 1074 - g 1077
@ < ©
o 0.0 - 10-6
9 T T T T T T T T Y
0 10 20 0 10 20 0 10 20
epochs # epochs # epochs
=== Online EM (proposed) === SGD
3
©
by 8
-
g 1.0 A E 10~ 4
(%]
5 S
—= 0.5 1 ‘= 1073
3 ©
° £
n
0 i <
S 0.0 T T T T
104 10° 104 10°

samples processed (log. scale) # samples processed (log. scale)

EEG data

p =30, n =106

=== Incremental EM (proposed) === SAG = Full-batch EM

Loss on left-out data

e Online EM (proposed) === SGD

e SGD e FR-Newton
3
©
E 100 s 1N\
4 s 34
o 1071 4 &
< 9,]
1 2l N :
— %]
(] -3] o 0
0+ T T 10 T T T 3 164 166
0 20 40 0 20 40 # samples processed (log. scale)
epochs # epochs plesp 9-

Future work

» Find an efficient way to code the algorithm (right now | have
to take pretty big mini-batches to be competitive with SGD)

Future work

» Find an efficient way to code the algorithm (right now | have
to take pretty big mini-batches to be competitive with SGD)

» Find a better policy to choose which matrices A’ to update in
the streaming setting

Future work

» Find an efficient way to code the algorithm (right now | have
to take pretty big mini-batches to be competitive with SGD)

» Find a better policy to choose which matrices A’ to update in
the streaming setting

» The M—step1 is costly: compute K = WA'W T € RP*P, and

K

m= Vi (I(Z:_l)ii
(AH)~! instead of the A%?

. Can we make it faster by accumulating the

Thanks for your attention!

