

An introduction to ICA

followed by:

EM Algorithms for ICA

Pierre Ablin
Parietal

Joint work with: F. Bach, JF. Cardoso & A. Gramfort

<https://arxiv.org/abs/1805.10054>

Parietal presentation, 2018

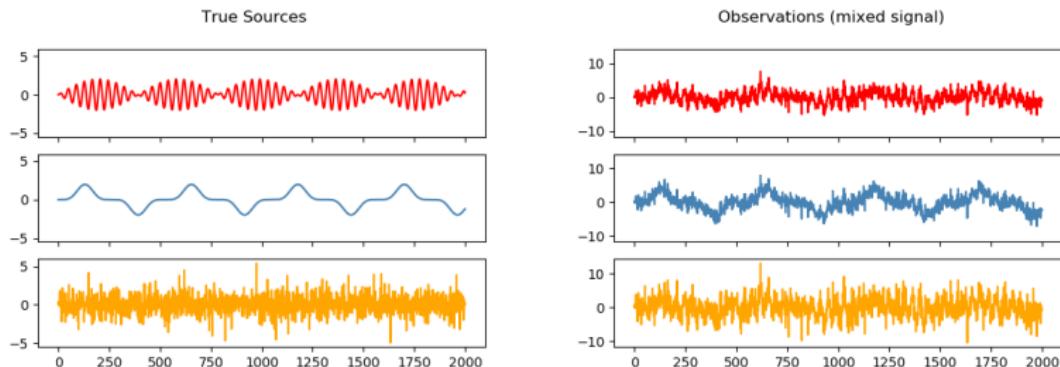
Introduction to ICA

Source separation: the cocktail party problem

Independent component analysis

Special case of source separation:

- ▶ Linear & instantaneous mixture
- ▶ “Square problem”: as many sources as sensors



$$x_1 = 1.1s_1 + 0.9s_2 + 1.2s_3$$

$$x_2 = 0.5s_1 + 0.8s_2 + 2.2s_3$$

$$x_3 = 1.5s_1 + 0.5s_2 - 2.4s_3$$

Problem formulation: ICA as a generative model

- We observe p signals $[x_1, \dots, x_p] = \mathbf{x} \in \mathbb{R}^{p \times 1}$

Key assumption

There are p independent signals $[s_1, \dots, s_p] = \mathbf{s} \in \mathbb{R}^{p \times 1}$ and $A \in \mathbb{R}^{p \times p}$ invertible such that:

Problem formulation: ICA as a generative model

- We observe p signals $[x_1, \dots, x_p] = \mathbf{x} \in \mathbb{R}^{p \times 1}$

Key assumption

There are p independent signals $[s_1, \dots, s_p] = \mathbf{s} \in \mathbb{R}^{p \times 1}$ and $A \in \mathbb{R}^{p \times p}$ invertible such that:

$$\mathbf{x} = A\mathbf{s}$$

Problem formulation: ICA as a generative model

- We observe p signals $[x_1, \dots, x_p] = \mathbf{x} \in \mathbb{R}^{p \times 1}$

Key assumption

There are p independent signals $[s_1, \dots, s_p] = \mathbf{s} \in \mathbb{R}^{p \times 1}$ and $A \in \mathbb{R}^{p \times p}$ invertible such that:

$$\mathbf{x} = A\mathbf{s}$$

Problem formulation

$$\mathbf{x} = A\mathbf{s}$$

Given some realizations of \mathbf{x} , we want to recover A and \mathbf{s} .

Is it possible?

Standard indeterminations:

- ▶ No hope to recover sources scales

Is it possible?

Standard indeterminations:

- ▶ No hope to recover sources scales
- ▶ Same for the ordering

Is it possible?

Standard indeterminations:

- ▶ No hope to recover sources scales
- ▶ Same for the ordering
- ▶ Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon '94].

Is it possible?

Standard indeterminations:

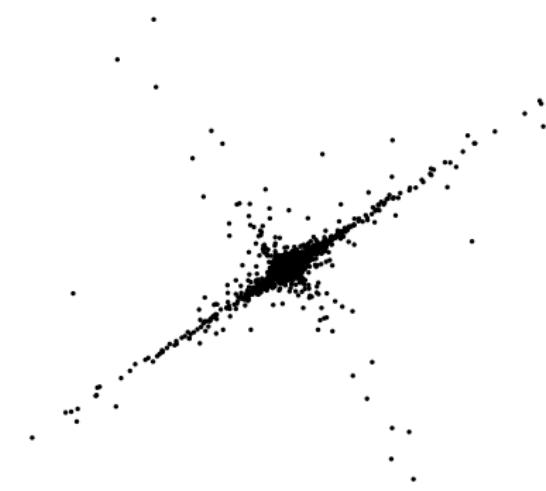
- ▶ No hope to recover sources scales
- ▶ Same for the ordering
- ▶ Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon '94].

A geometric viewpoint

In 2D ($p = 2$). $n = 2000$ points.

Sources



Mixed observed signals

Density matters

Different densities lead to different patterns

Super-Gaussian

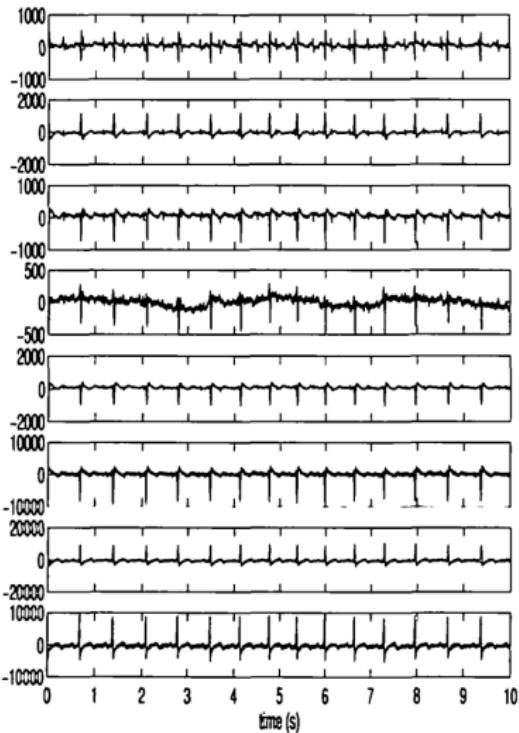
Sub-Gaussian

Gaussian

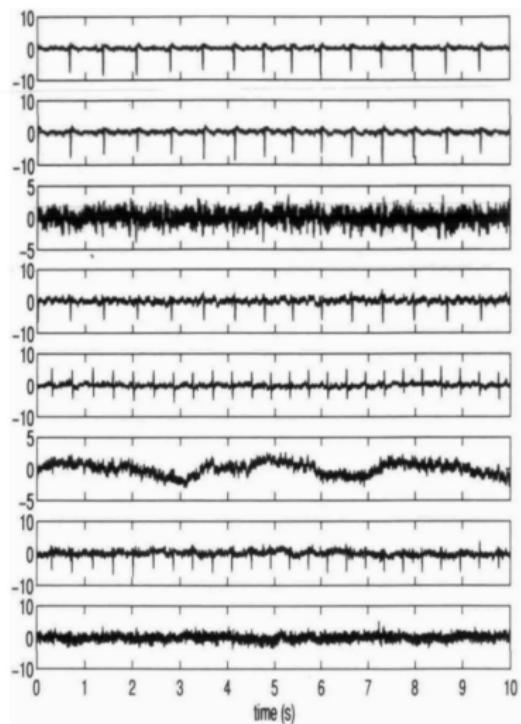
ICA in the real world

A cute example

ECG of a pregnant mother

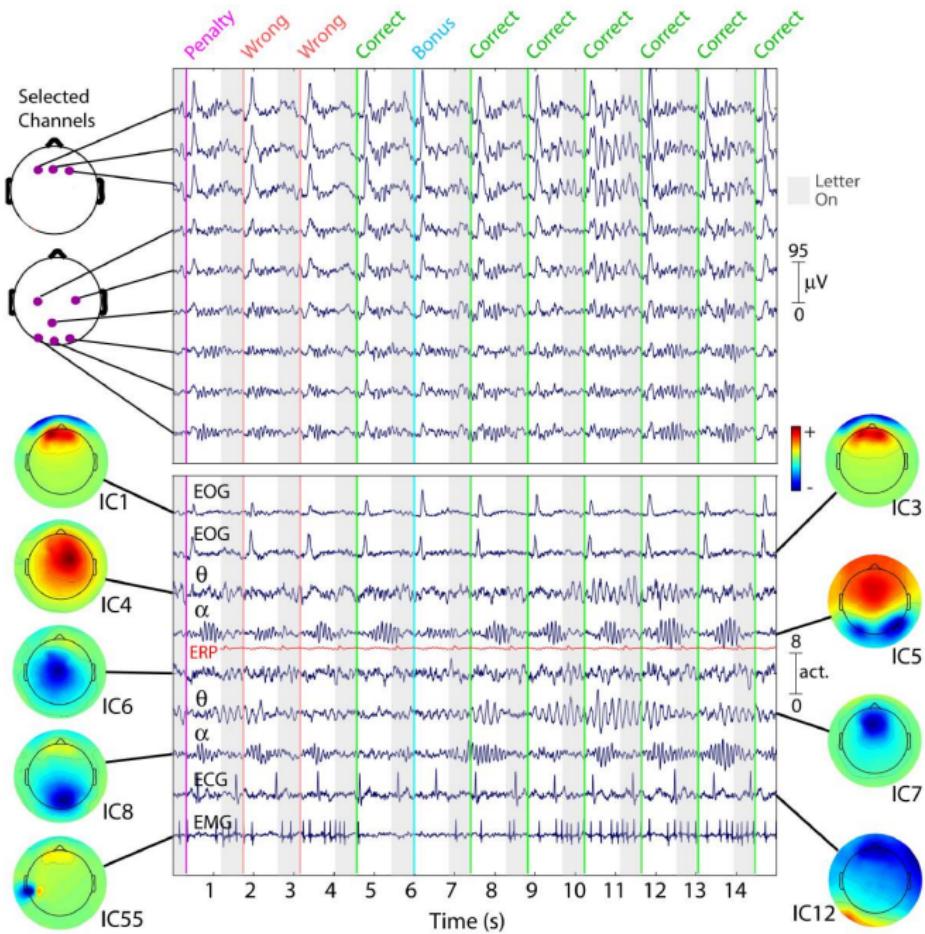


Recovered ICA sources

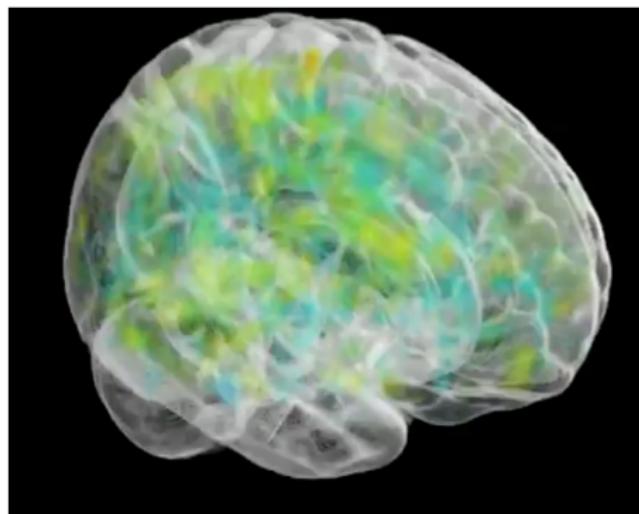
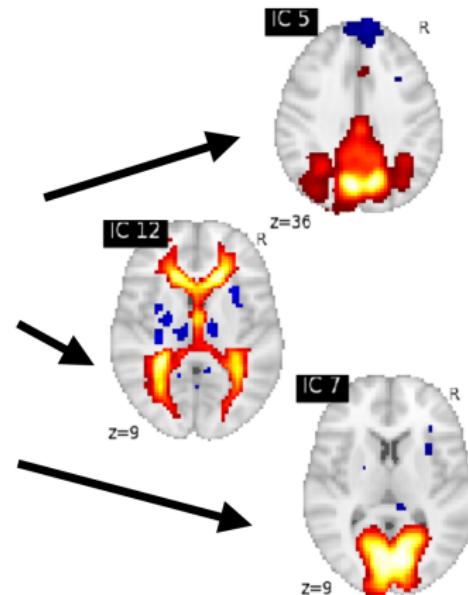


[Zarzoso '97]

ICA on EEG-MEG data



ICA on fMRI



A matrix factorization problem

Link with dictionary learning

Given n samples noted in matrix form $X \in \mathbb{R}^{p \times n}$

ICA: Find $A \in \mathbb{R}^{p \times p}$ and $S \in \mathbb{R}^{p \times n}$ such that $X = AS$.

- ▶ Perfect data fit ($X \equiv AS$)
- ▶ Assumption of statistical independence on S

Dictionary learning: Find $D \in \mathbb{R}^{p \times k}$ and $R \in \mathbb{R}^{k \times n}$ such that $X \simeq DR$

- ▶ Approximate data fit (introduces a penalty $\|X - DR\|_F$ in the optimization)
- ▶ Assumption of sparsity on R

Link with dictionary learning

Given n samples noted in matrix form $X \in \mathbb{R}^{p \times n}$

ICA: Find $A \in \mathbb{R}^{p \times p}$ and $S \in \mathbb{R}^{p \times n}$ such that $X = AS$.

- ▶ Perfect data fit ($X \equiv AS$)
- ▶ Assumption of statistical independence on S

Dictionary learning: Find $D \in \mathbb{R}^{p \times k}$ and $R \in \mathbb{R}^{k \times n}$ such that $X \simeq DR$

- ▶ Approximate data fit (introduces a penalty $\|X - DR\|_F$ in the optimization)
- ▶ Assumption of sparsity on R

Inference techniques

Maximum likelihood ICA

- ▶ $\mathbf{x} = As$: generative model.
- ▶ Further assumption: fixed density. $s_i \sim d$

Likelihood:

$$p(\mathbf{x}|A) = \frac{1}{|\det(A)|} \prod_{i=1}^p d([A^{-1}\mathbf{x}]_i)$$

Optimization problem

- ▶ Work with the unmixing matrix $W = A^{-1}$
- ▶ Cost function $\ell(\mathbf{x}, W) = -\log(p(\mathbf{x}|W^{-1}))$

$$\ell(\mathbf{x}, W) = -\log|\det(W)| - \sum_{i=1}^p \log(d([W\mathbf{x}]_i))$$

Optimization problem

- ▶ Work with the unmixing matrix $W = A^{-1}$
- ▶ Cost function $\ell(\mathbf{x}, W) = -\log(p(\mathbf{x}|W^{-1}))$

$$\ell(\mathbf{x}, W) = -\log|\det(W)| - \sum_{i=1}^p \log(d([W\mathbf{x}]_i))$$

Expected risk:

$$\mathcal{L}(W) = \mathbb{E}_{\mathbf{x}}[\ell(\mathbf{x}, W)] = -\log|\det(W)| - \sum_{i=1}^p \mathbb{E}[\log(d([W\mathbf{x}]_i))]$$

Optimization problem

- ▶ Work with the unmixing matrix $W = A^{-1}$
- ▶ Cost function $\ell(\mathbf{x}, W) = -\log(p(\mathbf{x}|W^{-1}))$

$$\ell(\mathbf{x}, W) = -\log|\det(W)| - \sum_{i=1}^p \log(d([W\mathbf{x}]_i))$$

Expected risk:

$$\mathcal{L}(W) = \mathbb{E}_{\mathbf{x}}[\ell(\mathbf{x}, W)] = -\log|\det(W)| - \sum_{i=1}^p \mathbb{E}[\log(d([W\mathbf{x}]_i))]$$

Empirical risk. Given n samples $[\mathbf{x}_1, \dots, \mathbf{x}_n] = X \in \mathbb{R}^{p \times n}$:

$$\mathcal{L}_n(W) = \frac{1}{n} \sum_{j=1}^n \ell(\mathbf{x}_j, W) = -\log|\det(W)| - \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n \log(d([WX]_{ij}))$$

Optimization problem

- ▶ Work with the unmixing matrix $W = A^{-1}$
- ▶ Cost function $\ell(\mathbf{x}, W) = -\log(p(\mathbf{x}|W^{-1}))$

$$\ell(\mathbf{x}, W) = -\log|\det(W)| - \sum_{i=1}^p \log(d([W\mathbf{x}]_i))$$

Expected risk:

$$\mathcal{L}(W) = \mathbb{E}_{\mathbf{x}}[\ell(\mathbf{x}, W)] = -\log|\det(W)| - \sum_{i=1}^p \mathbb{E}[\log(d([W\mathbf{x}]_i))]$$

Empirical risk. Given n samples $[\mathbf{x}_1, \dots, \mathbf{x}_n] = X \in \mathbb{R}^{p \times n}$:

$$\mathcal{L}_n(W) = \frac{1}{n} \sum_{j=1}^n \ell(\mathbf{x}_j, W) = -\log|\det(W)| - \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n \log(d([WX]_{ij}))$$

Optimization problem 2

Objective of maximum-likelihood ICA: find

$$W = \arg \min \mathcal{L}(W)$$

If you have a fixed dataset: find

$$W = \arg \min \mathcal{L}_n(W)$$

Optimization problem 2

Objective of maximum-likelihood ICA: find

$$W = \arg \min \mathcal{L}(W)$$

If you have a fixed dataset: find

$$W = \arg \min \mathcal{L}_n(W)$$

This is the problem solved by Infomax [Bell '95]

Optimization problem 2

Objective of maximum-likelihood ICA: find

$$W = \arg \min \mathcal{L}(W)$$

If you have a fixed dataset: find

$$W = \arg \min \mathcal{L}_n(W)$$

This is the problem solved by Infomax [Bell '95]

Geometry of the problem

$$\mathcal{L}_n(W) = -\log|\det(W)| - \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n \log(d([WX]_{ij}))$$

- ▶ No closed form solution. Iterative algorithms
- ▶ Optimization on the set of invertible matrices

Geometry of the problem

$$\mathcal{L}_n(W) = -\log|\det(W)| - \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n \log(d([WX]_{ij}))$$

- ▶ No closed form solution. Iterative algorithms
- ▶ Optimization on the set of invertible matrices
- ▶ Invariant by permutation of two rows of W

Geometry of the problem

$$\mathcal{L}_n(W) = -\log|\det(W)| - \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n \log(d([WX]_{ij}))$$

- ▶ No closed form solution. Iterative algorithms
- ▶ Optimization on the set of invertible matrices
- ▶ Invariant by permutation of two rows of W
- ▶ Non-convex problem

Geometry of the problem

$$\mathcal{L}_n(W) = -\log|\det(W)| - \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n \log(d([WX]_{ij}))$$

- ▶ No closed form solution. Iterative algorithms
- ▶ Optimization on the set of invertible matrices
- ▶ Invariant by permutation of two rows of W
- ▶ Non-convex problem

Stochastic gradient descent:

$$W_{t+1} = W_t - \rho \nabla \mathcal{L}_n(W_t)$$

The gradient is computed on a mini-batch of samples.

Issues

- ▶ Choosing ρ is critical and difficult (non-convex problem)
- ▶ No safe rule / descent guarantee
- ▶ Too small : slow convergence
- ▶ Too large : blow-up
- ▶ Line-search is hard in a stochastic setting

Stochastic gradient descent:

$$W_{t+1} = W_t - \rho \nabla \mathcal{L}_n(W_t)$$

The gradient is computed on a mini-batch of samples.

Issues

- ▶ Choosing ρ is critical and difficult (non-convex problem)
- ▶ No safe rule / descent guarantee
- ▶ Too small : slow convergence
- ▶ Too large : blow-up
- ▶ Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method, especially for large n .

Stochastic gradient descent:

$$W_{t+1} = W_t - \rho \nabla \mathcal{L}_n(W_t)$$

The gradient is computed on a mini-batch of samples.

Issues

- ▶ Choosing ρ is critical and difficult (non-convex problem)
- ▶ No safe rule / descent guarantee
- ▶ Too small : slow convergence
- ▶ Too large : blow-up
- ▶ Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method, especially for large n .

Proposed method

- ▶ Stochastic, so fast
- ▶ Guaranteed descent at each iteration
- ▶ One iteration is as costly as SGD

EM algorithms for ICA

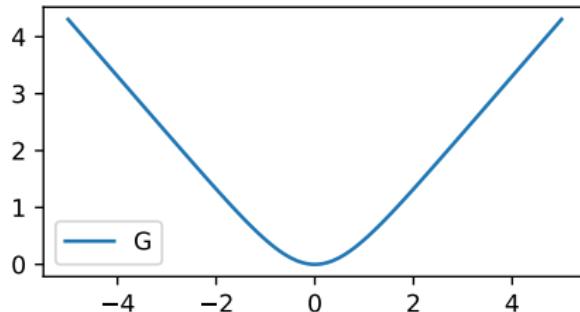
Super-Gaussian densities

- ▶ Define $G(y) = -\log(d(y))$.
- ▶ $\mathcal{L}_n(W) = -\log|\det(W)| + \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n G([WX]_{ij})$

Key assumption : d is *super-Gaussian*.

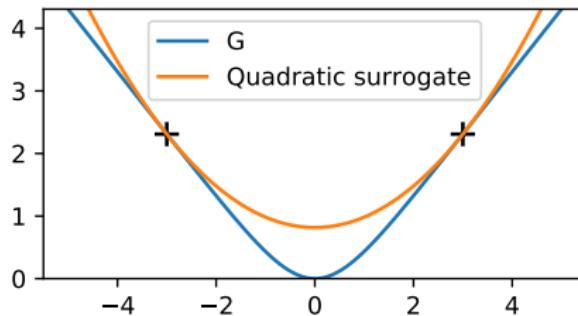
$G(\sqrt{\cdot})$ is concave.

- ▶ This is the case for most brain sources



Main idea: surrogate functions

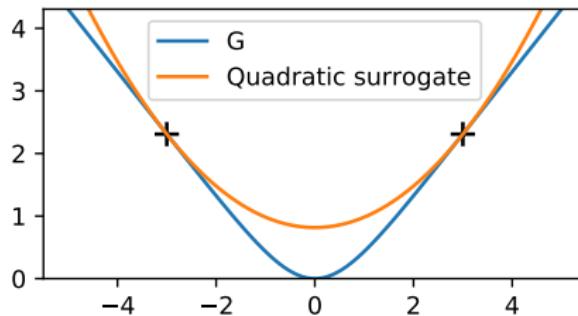
G has a quadratic surrogate at each point.



$$G(y) = \min_{u \geq 0} \frac{uy^2}{2} + f(u)$$

Main idea: surrogate functions

G has a quadratic surrogate at each point.

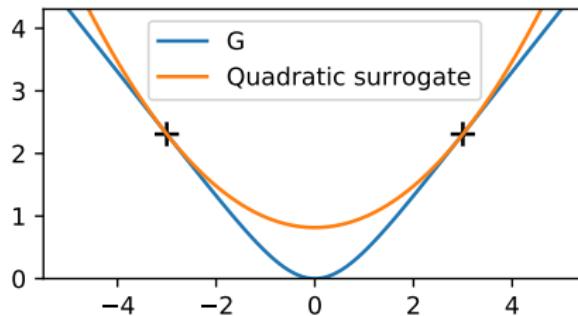


$$G(y) = \min_{u \geq 0} \frac{uy^2}{2} + f(u)$$

- ▶ f is an unimportant function.
- ▶ minimum reached for an unique value $u^*(y) = \frac{G'(y)}{y}$.

Main idea: surrogate functions

G has a quadratic surrogate at each point.



$$G(y) = \min_{u \geq 0} \frac{uy^2}{2} + f(u)$$

- ▶ f is an unimportant function.
- ▶ minimum reached for an unique value $u^*(y) = \frac{G'(y)}{y}$.

Surrogate risk

$$G(y) = \min_{u \geq 0} \frac{uy^2}{2} + f(u)$$

$$\ell(\mathbf{x}, W) = -\log|\det(W)| + \sum_{i=1}^p G([W\mathbf{x}]_i)$$

Introduce dual variables $\mathbf{u} \in \mathbb{R}^{p \times 1}$:

$$\tilde{\ell}(\mathbf{x}, W, \mathbf{u}) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p \mathbf{u}_i [W\mathbf{x}]_i^2 + \sum_{i=1}^p f(\mathbf{u}_i)$$

- ▶ Much simpler dependence in W !

Surrogate loss

$$G(y) = \min_{\substack{u \geq 0 \\ u \leq 0}} \frac{uy^2}{2} + f(u)$$

$$\mathcal{L}_n(W) = -\log|\det(W)| + \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n G([WX]_{ij})$$

Introduce dual variables $\mathcal{U} \in \mathbb{R}^{p \times n}$:

$$\tilde{\mathcal{L}}_n(W, \mathcal{U}) = -\log|\det(W)| + \frac{1}{2n} \sum_{i=1}^p \sum_{j=1}^n \mathcal{U}_{ij} [WX]_{ij}^2 + \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n f(\mathcal{U}_{ij})$$

Majorization properties

$$\mathcal{L}_n(W) = -\log|\det(W)| + \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n G([WX]_{ij})$$

$$\tilde{\mathcal{L}}_n(W, \mathbf{U}) = -\log|\det(W)| + \frac{1}{2n} \sum_{i=1}^p \sum_{j=1}^n \mathbf{U}_{ij} [WX]_{ij}^2 + \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^n f(\mathbf{U}_{ij})$$

- ▶ $\mathcal{L}_n(W) \leq \tilde{\mathcal{L}}_n(W, U)$, with equality iif $U = u^*(WX)$
- ▶ W minimizes \mathcal{L}_n if and only if $(W, u^*(WX))$ minimizes $\tilde{\mathcal{L}}_n$.

Alternate minimization

Idea:

- ▶ For a fixed U , minimize $\tilde{\mathcal{L}}_n(W, U)$ w.r.t. W
- ▶ For a fixed W , minimize $\tilde{\mathcal{L}}_n(W, U)$ w.r.t. U

Minimization in W

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2n} \sum_{i=1}^p \sum_{j=1}^n U_{ij} [WX]_{ij}^2 + \dots$$

Quadratic function in the rows of W :

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p W_{i:} A^i W_{i:}^\top + \dots$$

Minimization in W

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2n} \sum_{i=1}^p \sum_{j=1}^n U_{ij} [WX]_{ij}^2 + \dots$$

Quadratic function in the rows of W :

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p W_{i:} A^i W_{i:}^\top + \dots$$

Sufficient statistics:

$$A_{kl}^i = \frac{1}{n} \sum_{j=1}^n U_{ij} X_{kj} X_{lj}$$

Minimization in W

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2n} \sum_{i=1}^p \sum_{j=1}^n U_{ij} [WX]_{ij}^2 + \dots$$

Quadratic function in the rows of W :

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p W_{i:} A^i W_{i:}^\top + \dots$$

Sufficient statistics:

$$A_{kl}^i = \frac{1}{n} \sum_{j=1}^n U_{ij} X_{kj} X_{lj}$$

Minimization in W 2

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p W_{i:} A^i W_{i:}^\top + \dots$$

Minimization possible w.r.t. a *multiplicative* update of $W_{i:}$:
 $W \leftarrow MW$ where M is identity except for its i -th row which equals $\mathbf{m} \in \mathbb{R}^p$.

W.r.t \mathbf{m} , $\tilde{\mathcal{L}}_n(MW, U)$ is of the form $-\log(|m_i|) + \frac{1}{2}\mathbf{m}K\mathbf{m}^\top$,
 $K = WA^iW^\top \in \mathbb{R}^{p \times p}$.

Minimization in W 2

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p W_{i:} A^i W_{i:}^\top + \dots$$

Minimization possible w.r.t. a *multiplicative* update of $W_{i:}$:
 $W \leftarrow MW$ where M is identity except for its i -th row which equals $\mathbf{m} \in \mathbb{R}^p$.

W.r.t \mathbf{m} , $\tilde{\mathcal{L}}_n(MW, U)$ is of the form $-\log(|m_i|) + \frac{1}{2}\mathbf{m}K\mathbf{m}^\top$,
 $K = WA^iW^\top \in \mathbb{R}^{p \times p}$. Minimization in **closed form**:

$$\mathbf{m} = \frac{K_{i:}^{-1}}{\sqrt{(K^{-1})_{ii}}}$$

Minimization in W 2

$$\tilde{\mathcal{L}}_n(W, U) = -\log|\det(W)| + \frac{1}{2} \sum_{i=1}^p W_{i:} A^i W_{i:}^\top + \dots$$

Minimization possible w.r.t. a *multiplicative* update of $W_{i:}$:
 $W \leftarrow MW$ where M is identity except for its i -th row which equals $\mathbf{m} \in \mathbb{R}^p$.

W.r.t \mathbf{m} , $\tilde{\mathcal{L}}_n(MW, U)$ is of the form $-\log(|m_i|) + \frac{1}{2}\mathbf{m}K\mathbf{m}^\top$,
 $K = WA^iW^\top \in \mathbb{R}^{p \times p}$. Minimization in **closed form**:

$$\boxed{\mathbf{m} = \frac{K_{i:}^{-1}}{\sqrt{(K^{-1})_{ii}}}}$$

Stochastic minimization in U

We only need the A^i 's to minimize in W .

$$A_{kl}^i = \frac{1}{n} \sum_{j=1}^n U_{ij} X_{kj} X_{lj}$$

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

- ▶ Accumulate the A^i 's (in a stochastic way)

Stochastic minimization in U

We only need the A^i 's to minimize in W .

$$A_{kl}^i = \frac{1}{n} \sum_{j=1}^n U_{ij} X_{kj} X_{lj}$$

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

- ▶ Accumulate the A^i 's (in a stochastic way)

Incremental algorithm

Finite sum setting: n fixed, minimize $\tilde{\mathcal{L}}_n$.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

Need a memory $U^{\text{mem}} \in \mathbb{R}^{p \times n}$

Incremental algorithm

Finite sum setting: n fixed, minimize $\tilde{\mathcal{L}}_n$.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

Need a memory $U^{\text{mem}} \in \mathbb{R}^{p \times n}$

- ▶ Take a sample \mathbf{x}_j at random

Incremental algorithm

Finite sum setting: n fixed, minimize $\tilde{\mathcal{L}}_n$.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

Need a memory $U^{\text{mem}} \in \mathbb{R}^{p \times n}$

- ▶ Take a sample \mathbf{x}_j at random
- ▶ Compute $U_{:j}^{\text{new}} = u^*(W \mathbf{x}_j)$

Incremental algorithm

Finite sum setting: n fixed, minimize $\tilde{\mathcal{L}}_n$.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

Need a memory $U^{\text{mem}} \in \mathbb{R}^{p \times n}$

- ▶ Take a sample \mathbf{x}_j at random
- ▶ Compute $U_{:j}^{\text{new}} = u^*(W \mathbf{x}_j)$
- ▶ Update $A^i \leftarrow A^i + \frac{1}{n} (U_{ij}^{\text{new}} - U_{ij}^{\text{mem}}) \mathbf{x}_j \mathbf{x}_j^\top$

Incremental algorithm

Finite sum setting: n fixed, minimize $\tilde{\mathcal{L}}_n$.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

Need a memory $U^{\text{mem}} \in \mathbb{R}^{p \times n}$

- ▶ Take a sample \mathbf{x}_j at random
- ▶ Compute $U_{:j}^{\text{new}} = u^*(W \mathbf{x}_j)$
- ▶ Update $A^i \leftarrow A^i + \frac{1}{n} (U_{ij}^{\text{new}} - U_{ij}^{\text{mem}}) \mathbf{x}_j \mathbf{x}_j^\top$
- ▶ Update the memory: $U_{:j}^{\text{mem}} = U_{:j}^{\text{new}}$

Enforces $A^i = \frac{1}{n} \sum_{j=1}^n U_{ij}^{\text{mem}} \mathbf{x}_j \mathbf{x}_j^\top$ at all time.

Incremental algorithm

Finite sum setting: n fixed, minimize $\tilde{\mathcal{L}}_n$.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

Need a memory $U^{\text{mem}} \in \mathbb{R}^{p \times n}$

- ▶ Take a sample \mathbf{x}_j at random
- ▶ Compute $U_{:j}^{\text{new}} = u^*(W \mathbf{x}_j)$
- ▶ Update $A^i \leftarrow A^i + \frac{1}{n} (U_{ij}^{\text{new}} - U_{ij}^{\text{mem}}) \mathbf{x}_j \mathbf{x}_j^\top$
- ▶ Update the memory: $U_{:j}^{\text{mem}} = U_{:j}^{\text{new}}$

Enforces $A^i = \frac{1}{n} \sum_{j=1}^n U_{ij}^{\text{mem}} \mathbf{x}_j \mathbf{x}_j^\top$ at all time.

Online algorithm

Streaming setting: you receive samples one at a time. You can only use a sample once. n is not fixed.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

No more memory

Online algorithm

Streaming setting: you receive samples one at a time. You can only use a sample once. n is not fixed.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

No more memory

- ▶ Fetch a sample \mathbf{x}

Online algorithm

Streaming setting: you receive samples one at a time. You can only use a sample once. n is not fixed.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

No more memory

- ▶ Fetch a sample \mathbf{x}
- ▶ Compute $\mathbf{u} = u^*(W\mathbf{x})$

Online algorithm

Streaming setting: you receive samples one at a time. You can only use a sample once. n is not fixed.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

No more memory

- ▶ Fetch a sample \mathbf{x}
- ▶ Compute $\mathbf{u} = u^*(W\mathbf{x})$
- ▶ Update $A^i \leftarrow (1 - \rho(n))A^i + \rho(n)\mathbf{u}_i \mathbf{x} \mathbf{x}^\top$

Online algorithm

Streaming setting: you receive samples one at a time. You can only use a sample once. n is not fixed.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

No more memory

- ▶ Fetch a sample \mathbf{x}
- ▶ Compute $\mathbf{u} = u^*(W\mathbf{x})$
- ▶ Update $A^i \leftarrow (1 - \rho(n))A^i + \rho(n)\mathbf{u}_i \mathbf{x} \mathbf{x}^\top$
- ▶ Choose $\rho(n) = \frac{1}{n^\alpha}$, $\alpha \in [\frac{1}{2}, 1]$

Online algorithm

Streaming setting: you receive samples one at a time. You can only use a sample once. n is not fixed.

$$A^i = \frac{1}{n} \sum_{j=1}^n U_{ij} \mathbf{x}_j \mathbf{x}_j^\top$$

No more memory

- ▶ Fetch a sample \mathbf{x}
- ▶ Compute $\mathbf{u} = u^*(W\mathbf{x})$
- ▶ Update $A^i \leftarrow (1 - \rho(n))A^i + \rho(n)\mathbf{u}_i \mathbf{x} \mathbf{x}^\top$
- ▶ Choose $\rho(n) = \frac{1}{n^\alpha}$, $\alpha \in [\frac{1}{2}, 1]$

So far...

- ▶ Stochastic, so fast

So far...

- ▶ Stochastic, so fast
- ▶ Guaranteed descent at each iteration

So far...

- ▶ Stochastic, so fast
- ▶ Guaranteed descent at each iteration
- ▶ One iteration is as costly as SGD

So far...

- ▶ Stochastic, so fast
- ▶ Guaranteed descent at each iteration
- ▶ ~~One iteration is as costly as SGD~~

Computation cost

SGD: Computing the gradient costs p^2 operations /sample

So far: Updating one matrix A^i costs $\frac{p(p+1)}{2}$ operations/sample
 $\rightarrow \frac{p^2(p+1)}{2}$ operations/sample

Computation cost

SGD: Computing the gradient costs p^2 operations /sample

So far: Updating one matrix A^i costs $\frac{p(p+1)}{2}$ operations/sample
 $\rightarrow \frac{p^2(p+1)}{2}$ operations/sample

Idea: only update $q < p$ matrices per sample.

Computation cost

SGD: Computing the gradient costs p^2 operations /sample

So far: Updating one matrix A^i costs $\frac{p(p+1)}{2}$ operations/sample
 $\rightarrow \frac{p^2(p+1)}{2}$ operations/sample

Idea: only update $q < p$ matrices per sample.

Diminishing the computation cost

Update $q < p$ matrices A^i per sample.

Incremental algorithm

- ▶ Compute the *dual gap* associated with each update:

$$\text{gap}(W, U_{ij}^{\text{old}}) = \frac{1}{2} U_{ij}^{\text{old}} [WX]_{ij}^2 + f(U_{ij}^{\text{old}}) - G([WX]_{ij})$$

Diminishing the computation cost

Update $q < p$ matrices A^i per sample.

Incremental algorithm

- ▶ Compute the *dual gap* associated with each update:

$$\text{gap}(W, U_{ij}^{\text{old}}) = \frac{1}{2} U_{ij}^{\text{old}} [WX]_{ij}^2 + f(U_{ij}^{\text{old}}) - G([WX]_{ij})$$

- ▶ Measures the decrease of $\tilde{\mathcal{L}}_n$ associated with the updating to the i -th matrix

Diminishing the computation cost

Update $q < p$ matrices A^i per sample.

Incremental algorithm

- ▶ Compute the *dual gap* associated with each update:

$$\text{gap}(W, U_{ij}^{\text{old}}) = \frac{1}{2} U_{ij}^{\text{old}} [WX]_{ij}^2 + f(U_{ij}^{\text{old}}) - G([WX]_{ij})$$

- ▶ Measures the decrease of $\tilde{\mathcal{L}}_n$ associated with the updating to the i -th matrix
- ▶ Update the q matrix associated with the largest decreases

Diminishing the computation cost

Update $q < p$ matrices A^i per sample.

Incremental algorithm

- ▶ Compute the *dual gap* associated with each update:

$$\text{gap}(W, U_{ij}^{\text{old}}) = \frac{1}{2} U_{ij}^{\text{old}} [WX]_{ij}^2 + f(U_{ij}^{\text{old}}) - G([WX]_{ij})$$

- ▶ Measures the decrease of $\tilde{\mathcal{L}}_n$ associated with the updating to the i -th matrix
- ▶ Update the q matrix associated with the largest decreases

Online algorithm

- ▶ Update q matrices at random

Diminishing the computation cost

Update $q < p$ matrices A^i per sample.

Incremental algorithm

- ▶ Compute the *dual gap* associated with each update:

$$\text{gap}(W, U_{ij}^{\text{old}}) = \frac{1}{2} U_{ij}^{\text{old}} [WX]_{ij}^2 + f(U_{ij}^{\text{old}}) - G([WX]_{ij})$$

- ▶ Measures the decrease of $\tilde{\mathcal{L}}_n$ associated with the updating to the i -th matrix
- ▶ Update the q matrix associated with the largest decreases

Online algorithm

- ▶ Update q matrices at random

All good!

- ▶ Stochastic, so fast
- ▶ Guaranteed descent at each iteration
- ▶ One iteration is as costly as SGD (with $q = 2$)

Results

Convergence measures

- ▶ **Loss on left-out data**
- ▶ **Amari distance** Requires that the true mixing matrix A is available. For a matrix W , compute $R = WA$ and
$$d = \sum_{i=1}^p \left(\sum_{j=1}^p \frac{R_{ij}^2}{\max_l R_{il}^2} - 1 \right) + \sum_{i=1}^p \left(\sum_{j=1}^p \frac{R_{ji}^2}{\max_l R_{lj}^2} - 1 \right).$$
 Cancels iif W^{-1} and A are equal up to permutation and scale.

Convergence measures

- ▶ **Loss on left-out data**
- ▶ **Amari distance** Requires that the true mixing matrix A is available. For a matrix W , compute $R = WA$ and
$$d = \sum_{i=1}^p \left(\sum_{j=1}^p \frac{R_{ij}^2}{\max_l R_{il}^2} - 1 \right) + \sum_{i=1}^p \left(\sum_{j=1}^p \frac{R_{ji}^2}{\max_l R_{lj}^2} - 1 \right).$$
Cancels iif W^{-1} and A are equal up to permutation and scale.
- ▶ **Gradient norm:** gradient of $\tilde{\mathcal{L}}_n$. Only meaningful for the finite-sum setting.

Convergence measures

- ▶ **Loss on left-out data**

- ▶ **Amari distance** Requires that the true mixing matrix A is available. For a matrix W , compute $R = WA$ and

$$d = \sum_{i=1}^p \left(\sum_{j=1}^p \frac{R_{ij}^2}{\max_l R_{il}^2} - 1 \right) + \sum_{i=1}^p \left(\sum_{j=1}^p \frac{R_{ji}^2}{\max_l R_{lj}^2} - 1 \right).$$

Cancels iif W^{-1} and A are equal up to permutation and scale.

- ▶ **Gradient norm:** gradient of $\tilde{\mathcal{L}}_n$. Only meaningful for the finite-sum setting.

Other algorithms

- ▶ **SGD** (i.e. Infomax). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Variance reduced methods** (i.e. SAG/ SAGA/ SVRG...). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.

Other algorithms

- ▶ **SGD** (i.e. Infomax). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Variance reduced methods** (i.e. SAG/ SAGA/ SVRG...). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Full batch second order methods** (i.e. Picard !) Works with a line search technique.

Other algorithms

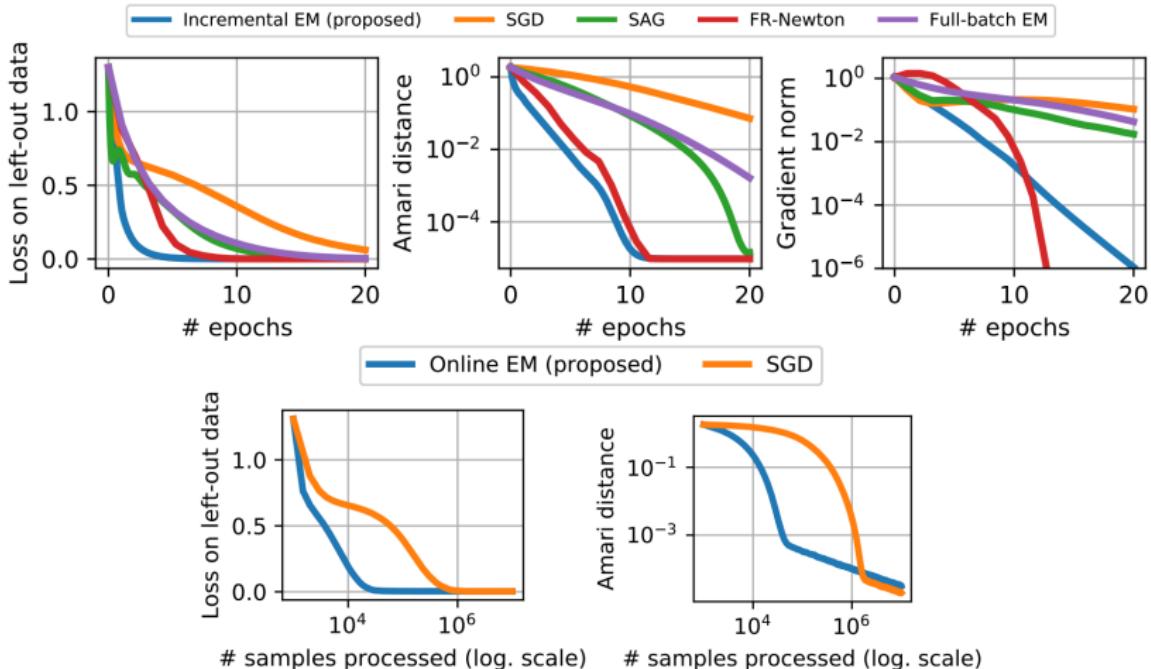
- ▶ **SGD** (i.e. Infomax). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Variance reduced methods** (i.e. SAG/ SAGA/ SVRG...). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Full batch second order methods** (i.e. Picard !) Works with a line search technique.
- ▶ Full batch EM

Other algorithms

- ▶ **SGD** (i.e. Infomax). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Variance reduced methods** (i.e. SAG/ SAGA/ SVRG...). Step size $\rho = \frac{\beta}{t^\alpha}$ hand tuned to get the best convergence.
- ▶ **Full batch second order methods** (i.e. Picard !) Works with a line search technique.
- ▶ **Full batch EM**

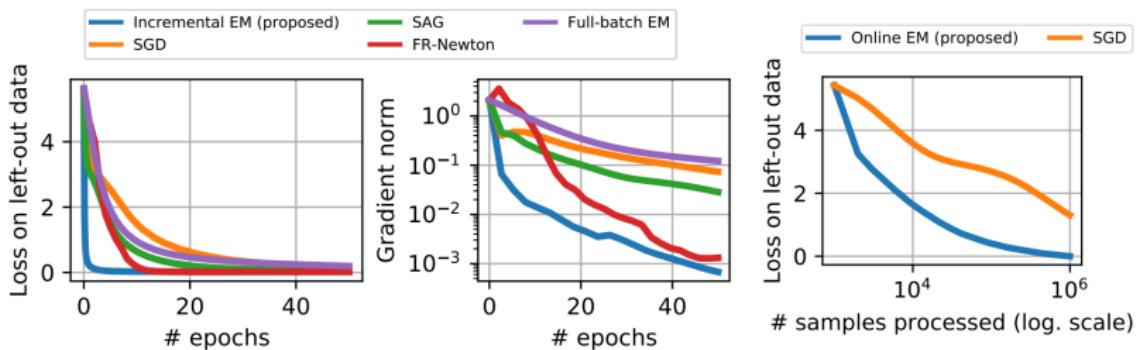
Simulated data

$p = 10$, $n = 10^6$ in the finite sum setting, 10^7 in the online setting.
 $S \in \mathbb{R}^{p \times n}$ generated with density $d(x) = \frac{1}{2} \exp(-|x|)$. $X = AS$



EEG data

$$p = 30, n = 10^6$$



Future work

- ▶ Find an efficient way to code the algorithm (right now I have to take pretty big mini-batches to be competitive with SGD)
- ▶ Find a better policy to choose which matrices A^i to update in the streaming setting

Future work

- ▶ Find an efficient way to code the algorithm (right now I have to take pretty big mini-batches to be competitive with SGD)
- ▶ Find a better policy to choose which matrices A^i to update in the streaming setting
- ▶ The M-step is costly: compute $K = WA^iW^\top \in \mathbb{R}^{p \times p}$, and $\mathbf{m} = \frac{K_{i:}^{-1}}{\sqrt{(K^{-1})_{ii}}}.$ Can we make it faster by accumulating the $(A^i)^{-1}$ instead of the A^i ?

Future work

- ▶ Find an efficient way to code the algorithm (right now I have to take pretty big mini-batches to be competitive with SGD)
- ▶ Find a better policy to choose which matrices A^i to update in the streaming setting
- ▶ The M-step is costly: compute $K = WA^iW^\top \in \mathbb{R}^{p \times p}$, and $\mathbf{m} = \frac{K_{i:}^{-1}}{\sqrt{(K^{-1})_{ii}}}.$ Can we make it faster by accumulating the $(A^i)^{-1}$ instead of the A^i ?

Thanks for your attention!