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Introduction to ICA



Source separation: the cocktail party problem




Independent component analysis

Special case of source separation:
» Linear & instantaneous mixture
> “Square problem”: as many sources as sensors

True Sources Observations (mixed signal)
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Problem formulation: ICA as a generative
model

» We observe p signals [r1,- - ,z,] = x € RP*!

Key assumption

There are p independent signals [sq, - , sp] =s € RP*! and
A € RP*P jnvertible such that:

X = As



Problem formulation

X = As

Given some realizations of x, we want to recover A
and s.



Is it possible?

Standard indeterminations:



Is it possible?

Standard indeterminations:

» No hope to recover sources scales



Is it possible?

Standard indeterminations:
» No hope to recover sources scales

» Same for the ordering



Is it possible?

Standard indeterminations:
» No hope to recover sources scales
» Same for the ordering

» Impossible to separate two Gaussian signals
(rotation invariant)

Otherwise, the problem is well-posed [Comon '94].



A geometric viewpoint

In 2D (p = 2). n = 2000 points.

Sources Mixed observed signals



Density matters

Different densities lead to different patterns

Super-Gaussian Sub-Gaussian Gaussian



ICA in the real world



A cute

ECG of a pregnant mother
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Recovered ICA sources
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ICA on EEG-MEG data
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ICA on fMRI




A matrix factorization
problem



Link with dictionary learning

Given n samples noted in matrix form X € RP*™

ICA: Find A € RP*P and S € RP*"™ such that X = AS.
> Perfect data fit (X[=]AS)

» Assumption of statistical independence on S



Link with dictionary learning

Given n samples noted in matrix form X € RP*™

ICA: Find A € RP*P and S € RP*"™ such that X = AS.
> Perfect data fit (X[=]AS)

» Assumption of statistical independence on S

Dictionnary learning: Find D € RP** and R € R*¥*" such that
X ~DR

» Approximate data fit (introduces a penalty || X — DR||p in
the optimization)

» Assumption of sparsity on R



Inference techniques



Maximum likelihood ICA

» x = As: generative model.

» Further assumption: fixed density.

Likelihood:

L d(A X))

P = ey 1




Optimization problem

» Work with the unmixing matrix W = A~!
» Cost function £(x, W) = —log(p(x|W 1))
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Optimization problem

» Work with the unmixing matrix W = A~!
» Cost function £(x, W) = —log(p(x|W 1))

p
(x, W) = —log|det(W)| — Zlog(d([WX
Expected risk:

L(W) = Bx[£(x,W)] = — logldet(W)| — 3 Ellog(d([Wx];))]

Empirical risk. Given n samples [x1, - ,x,] = X € RP*"™:

lZex], W) = —log|det(W |——ZZlog (W X]i;))
=1

11]1

3



Optimization problem 2

Objective of maximum-likelihood ICA: find

W = argmin L(W)
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Optimization problem 2

Objective of maximum-likelihood ICA: find
W = arg min L(W)

If you have a fixed dataset: find
W = argmin £, (W)

This is the problem solved by Infomax [Bell '95]
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i=1j=1

» No closed form solution. lterative algorithms
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v

v

Geometry of the problem

L, (W) = —log|det(W)| — — ZZlog (W X]i;))
i=1j=1

No closed form solution. lterative algorithms
Optimization on the set of invertible matrices
Invariant by permutation of two rows of W

Non-convex problem



Infomax

Stochatic gradient descent:

Wi =Wy — pV£n(Wt)

The gradient is computed on a mini-batch of samples.
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Infomax

Stochatic gradient descent:

Wi =Wy — pV£n(Wt)

The gradient is computed on a mini-batch of samples.

Issues
» Choosing p is critical and difficult (non-convex problem)
» No safe rule / descent guarantee
> Too small : slow convergence
» Too large : blow-up
> Line-search is hard in a stochastic setting

Advantage: SGD can be much faster than full-batch method,
especially for large n.



Proposed method

» Stochastic, so fast
» Guaranteed descent at each iteration

» One iteration is as costly as SGD



EM algorithms for ICA



Super-Gaussian densities

» Define G(y) = —log(d(y)).
> Lo(W) = —log|det(W)| + 3 30 S7-y G(IWX]yy)
Key assumption : d is super-Gaussian.

G(+/*) is concave.

» This is the case for most brain sources




Main idea: surrogate functions

G has a quadratic surrogate at each point.
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Main idea: surrogate functions

G has a quadratic surrogate at each point.

— G
——— Quadratic surrogate

G(y) = min % + f(u)

» f is an unimportant function.

!
» minimum reached for an unique value u*(y) = GT(y)



Surrogate risk

2
Gy) = glzig % + f(u)

U(x, W) = —log|det(W)| + Z:G([WX]Z)

Introduce dual variables u € RP*!:

P
{(x,W,u) = —log|det(W)| + %Zul (Wx]? + Zf(ui)
i=1 i=1

» Much simpler dependence in W' !



Surrogate loss

Introduce dual variables U € RP*";

1 1&
La(W.U) = ~logldet(W)|+5 - 3 > Uiy (WX 33 f(Uy)
i=1j=1 i=1j=1



Majorization properties

£.(W) =~ logldet (W) + -3 3" G(WX]y)
i=1 j=1
Ln(W,U) = —log|det(W)|+-— > an Uij [WX]%—#—% > znj f(U3)
i=1j=1 i=1j=1

> L, (W) < L,(W,U), with equality iif U = u*(WX)
» W minimizes £, if and only if (W, u*(W X)) minimizes L,,.



Alternate minimization

Idea:

» For a fixed U, minimize £,,(W,U) w.rt. W
» For a fixed W, minimize £,(W,U) w.r.t. U



Minimization in W

P n

5 1
i=1j=1



Minimization in W

. 1 K&
Lo(W,U) = —logldet(W)| + — > S Uy WX]Z + -

2n i=1j=1

Quadratic function in the rows of W:
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La(W,U) = —log|det(W)| + S Wi AW + -
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Minimization in W

p n

5 1
L,(W,U) = —log|det(W)| + o Z Z Uij [WX]% 4.
i=1j=1

Quadratic function in the rows of W:

1< ,
La(W,U) = —log|det(W)| + S Wi AW + -
=1

Sufficient statistics:

. 1>
M= > UiiXkiXi
j=1



Minimization in W 2

- 1< .

Lo(W,U) = —log|det(W)| + 3 ST Wi AW + -
i=1

Minimization possible w.r.t. a multiplicative update of W;.:

W < MW where M is identity except for its i-th row which

equals m € RP,
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- 1< .
Lo(W,U) = —log|det(W)| + 3 ST Wi AW + -
i=1
Minimization possible w.r.t. a multiplicative update of W;.:
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Minimization in W 2

- 1< A
Lo(W,U) = —log|det(W)| + 3 ST Wi AW + -
i=1
Minimization possible w.r.t. a multiplicative update of W;.:
W < MW where M is identity except for its i-th row which
equals m € RP,

W.rt m, £,(MW,U) is of the form —log(|m;|) + smKm ",
K = WA'WT € RP*P. Minimization in closed form:




Stochastic minimization in U

We only need the A%'s to minimize in W.

A 12
j=1

I L
i __ 2: [
A —E UZ]Xij
J=1



Stochastic minimization in U

We only need the A%'s to minimize in W.

) 1
=D Uiy X Xy
j=1

1 &
i __ [
A = - E Uijx;x;
j=1

» Accumulate the A%'s (in a stochastic way)



Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1
T __ R
A = - E U”xjxj
i=1
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Finite sum setting: n fixed, minimize £,.

) 1 T
AZ = — Z Uinij
n 4
J=1
Need a memory UMM € R P*"

» Take a sample x; at random
» Compute U™ = u*(Wx;)

> Update A’ = A’ + L(UP — UPe™)x;x]



Incremental algorithm

Finite sum setting: n fixed, minimize £,.

) 1
i R
A = - E U,]xjxj
i=1

Need a memory UMM € R P*"

v

Take a sample x; at random
Compute U = u*(Wx;)
Update A" <~ A’ + L(UP™ — UPe™)x;x ]

J
Update the memory: UT™ = U™

v

v

v

i 1 n memy, .« | .
Enforces A" = - > 7%, U;7*"x;x; at all time.



Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

i __ R
A = - E UijX;jX,;
j:l
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Online algorithm

Streaming setting: you recieve samples one at a time. You can
only use a sample once. n is not fixed.

. 1
i __ R
At = - E UijX;X;
j=1
No more memory

> Fetch a sample x
» Compute u = u*(Wx)
» Update A’ + (1 — p(n)) A" + p(n)u;xx "

» Choose p(n) = =, o € [3,1]
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» Stochastic, so fast

» Guaranteed descent at each iteration



So far...

» Stochastic, so fast

» Guaranteed descent at each iteration

» Oreiteration i v 25 SGE
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Computation cost

SGD: Computing the gradient costs p? operations /sample

So far: Updating one matrix A’ costs p(p72+1) operations/sample

— B (p+ ) operations/sample

Idea: only update ¢ < p matrices per sample.
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Diminishing the computation cost

Update ¢ < p matrices A* per sample.

Incremental algorithm

» Compute the dual gap associated with each update:

gap(W,US) = UM [WX]2 + f(US9) — G(WX]y)

)

» Measures the decrease of £~n associated with the updating to
the i-th matrix

» Update the g matrix associated with the largest decreases
Online algorithm

» Update ¢ matrices at random



All good!

» Stochastic, so fast
» Guaranteed descent at each iteration

» One iteration is as costly as SGD (with ¢ = 2)



Results
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» Loss on left-out data
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» Amari distance Requires that the true mixing matrix A is

available. For a matrix W, compute R = W A and
R2

R,
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Cancels iif W~! and A are equal up to permutation and scale.




Convergence measures

» Loss on left-out data

» Amari distance Requires that the true mixing matrix A is

available. For a matrix W, compute R = W A and
R2

R
d=3"_ 1(Z] 1male2 -1)+ X 1(2] 1m—1)

Cancels iif W~! and A are equal up to permutation and scale.

» Gradient norm: gradient of £,,. Only meaningful for the
finite-sum setting.
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Other algorithms

SGD (i.e. Infomax). Step size p = tﬁa hand tuned to get the
best convergence.

Variance reduced methods (i.e. SAG/ SAGA/ SVRG...).
Step size p = tﬁa hand tuned to get the best convergence.

Full batch second order methods (i.e. Picard !) Works
with a line search technique.

Full batch EM



Simulated data

p =10, n = 10% in the finite sum setting, 107 in the online setting.
S € RP*™ generated with density d(z) = 5 exp(—|z|). X = AS
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EEG data

p =30, n =106

=== Incremental EM (proposed) === SAG = Full-batch EM

Loss on left-out data

e Online EM (proposed) === SGD

e SGD e FR-Newton
3
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Future work

» Find an efficient way to code the algorithm (right now | have
to take pretty big mini-batches to be competitive with SGD)

» Find a better policy to choose which matrices A’ to update in
the streaming setting

» The M—step1 is costly: compute K = WA'W T € RP*P, and

K

m= Vi (I(Z:_l)ii
(AH)~! instead of the A%?

. Can we make it faster by accumulating the



Thanks for your attention!



