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Motivation

Standard linear ICA solvers, e.g. Infomax/FastICA, are widely used
in applied science.

Slow convergence on real data

» Understand why?

» Provide faster algorithms



Maximum likelihood ICA



The linear ICA model

P e Seey

Observations: N signals of length 7', X € RV*T

Generative model: There exists a matrix A € RV*N and
independent signals [s1,--- ,sy]T = S € RVXT such that:

X =AS
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P e Seey

Observations: N signals of length 7', X € RV*T

Generative model: There exists a matrix A € RV*N and
independent signals [s1,--- ,sy]T = S € RVXT such that:

X =AS

White signals :

We assume C'x = %XXT = Iy (decorrelated signals).
Enforce it by X <« C';(I/2X



Likelihood of the model

Density of the sources: s; ~ p;.

Likelihood of the model:
T
p(X|A) = H sz IX it)
t:l

Cost function: L(W) = —= log(p(X|W 1))

=1

N
LW) = —log|det W| + 3 E[—log(pi([WX]ir))]




Maximum likelihood ICA
L(W) = —log|det W| + SN | B[ log(p;([W X]ir))]

» Find W = arg min £(IV) (maximum likelihood estimator)
» Solved by Infomax! with fixed densities (Vi, p; = p)

!Bell, Sejnowski, "An information-maximization approach to blind
separation and blind deconvolution", 1995



Maximum likelihood ICA
L(W) = —log|det W| + SN | B[ log(p;([W X]ir))]

» Find W = arg min £(IV) (maximum likelihood estimator)
» Solved by Infomax! with fixed densities (Vi, p; = p)

Orthogonal constraint:

» Find W = argmin £(W) subject to WW T = Iy.
» Solved by Fastica® with a binary switch between densities
(i, log(pi) = +1log(p))

!Bell, Sejnowski, "An information-maximization approach to blind
separation and blind deconvolution", 1995

2Hyvarinen, "Fast and robust fixed-point algorithms for independent
component analysis", 1999



An optimization problem



Geometry of the cost function
N A
LW) = —log|det W| + ) _ E[~log(pi([W X]i))]
=1

» Optimization on the set of invertible matrices

» Non-Convex problem

Relative (multiplicative) update:

W exp(E)W, € e RV

» W remains invertible

» Easy to enforce orthogonal constraint: take £ antisymmetric



Derivatives of the cost function

L(W) = —log|det W| + YN, E[—log(pi([WX]it))]

Second order expansion:

Lexp(E)W) = LIW) + (G]€) + %<5|H|5> +O(lIENP)

GERNXN HERNXNXNXN



Derivatives of the cost function

L(W) = —log|det W| + YN, E[—log(pi([WX]it))]

Second order expansion:

Lexp(E)W) = LIW) + (G]€) + %<5|H|5> +O(lIENP)

GERNXN HERNXNXNXN

Define () = —log(pi()) = —4J, ¥ = WX.

> Gij = Eli(yi)y;] — 0 (0 =1ifi=7, 0 else)
> Hiji = 0adnE[i(yi)yi) + i B () y;u]
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Newton’s method?

vi)us] = 0y
= ’LZ(S]kE[ i(Yi)yil + i E[@b{(yz)yyyl}

W+ exp(E)W

Quadratic convergence ©
H is costly to compute: O(N3T) ®
H is costly to regularize, and invert ®

Not practical



Hessian approximation

Hijrr = 60k B[ (yi)yil + i E[] (i) ;1]

If the signals in Y are independent and there are infinitely many
samples, H simplifies:

Hijra = 66 E[i(yi)yi] + 0indju B[ (y:)y)

v

Cheaper to compute (O(N?T), as costly as a gradient) ©

v

Block diagonal structure with blocks of size 2

v

Easy to regularize (regularize each block) ©

v

Easy to invert (invert each block) ©



On a 4 sources problem




Idea: use H for Newton’s method

W+ exp(E)W

» Fast-relative Newton3
» FastICA follows similar iterations with projection #:
E-€&T

5<—2

Key remark: H is a good approximation only when the signals are
independent...

3Zibulevski, "Blind source separation with relative newton method", 2003
“Ablin et al., "Faster ICA under orthogonal constraint", 2018



Practical example



Synthetic data # real data
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What’s going on?

» On the EEG signals, the ICA model X = AS is only true to
some extent.

» H is never a really good approximation of H

Spectrum of HsHH 3
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Bad conditioning



The Picard algorithm



Preconditioning

» H is not good enough on real signals

» Use H as a preconditioner

L-BFGS is a widely spread quasi-Newton algorithm




Preconditioning

» H is not good enough on real signals
» Use H as a preconditioner
L-BFGS is a widely spread quasi-Newton algorithm
» Uses the previous iterations W,,, W,,_1,--- and gradient
values G,,, Gj,_1, - - to build an approximation of H
» No prior knowledge on the problem
» Starts from an initial guess Al in the standard version
» Simply use H as initialization!

Orthogonal constraint: Project £ : £ « 5_25T

Preconditioned ICA for Real Data®

SAblin et al., "Faster ICA by preconditioning with Hessian approximations",
2017



Better conditioning

Picard’s Hessian approximation is built upon H, and refined using
the past.
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Results on real data



Genomics dataset
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Image patch dataset
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EEG dataset
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Conclusion

» Speed of standard algorithms (FastICA, Fast-Relative
Newton) critically relies on the independence assumption

> In a realistic setting, this assumption never really holds
» The Picard algorithm overcomes this issue, finds the same
solutions much faster

Python/Matlab/Octave code available online!

https://github.com /pierreablin /picard

P. Ablin, J. F. Cardoso and A. Gramfort, "Faster ICA by Preconditioning With
Hessian Approximations," in [EEE TSP, 2018
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Thanks for your attention!



