

Accelerating likelihood optimization for ICA on real signals

Pierre Ablin
INRIA

Joint work with: JF. Cardoso & A. Gramfort

LVA-ICA 2018

Motivation

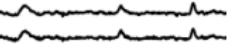
Standard linear ICA solvers, e.g. Infomax/FastICA, are widely used in applied science.

Slow convergence on real data

- ▶ Understand why?
- ▶ Provide faster algorithms

Maximum likelihood ICA

The linear ICA model

Observations: N signals of length T , $X \in \mathbb{R}^{N \times T}$ 

Generative model: There exists a matrix $A \in \mathbb{R}^{N \times N}$ and independent signals $[s_1, \dots, s_N]^\top = S \in \mathbb{R}^{N \times T}$ such that:

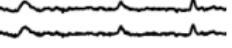
$$X = AS$$

White signals :

We assume $C_X = \frac{1}{T}XX^\top = I_N$ (decorrelated signals).

Enforce it by $X \leftarrow C_X^{-1/2}X$

The linear ICA model

Observations: N signals of length T , $X \in \mathbb{R}^{N \times T}$ 

Generative model: There exists a matrix $A \in \mathbb{R}^{N \times N}$ and independent signals $[s_1, \dots, s_N]^\top = S \in \mathbb{R}^{N \times T}$ such that:

$$X = AS$$

White signals :

We assume $C_X = \frac{1}{T}XX^\top = I_N$ (decorrelated signals).

Enforce it by $X \leftarrow C_X^{-1/2}X$

Likelihood of the model

Density of the sources: $s_i \sim p_i$.

Likelihood of the model:

$$p(X|A) = \prod_{t=1}^T \frac{1}{|\det(A)|} \prod_{i=1}^N p_i([A^{-1}X]_{it})$$

Cost function: $\mathcal{L}(W) = -\frac{1}{T} \log(p(X|W^{-1}))$

$$\mathcal{L}(W) = -\log|\det W| + \sum_{i=1}^N \hat{E}[-\log(p_i([WX]_{it}))]$$

Maximum likelihood ICA

$$\mathcal{L}(W) = -\log|\det W| + \sum_{i=1}^N \hat{E}[-\log(p_i([WX]_{it}))]$$

- ▶ Find $W = \arg \min \mathcal{L}(W)$ (maximum likelihood estimator)
- ▶ Solved by Infomax¹ with fixed densities ($\forall i, p_i = p$)

Orthogonal constraint:

- ▶ Find $W = \arg \min \mathcal{L}(W)$ subject to $WW^\top = I_N$.
- ▶ Solved by Fastica² with a binary switch between densities ($\forall i, \log(p_i) = \pm \log(p)$)

¹Bell, Sejnowski, "An information-maximization approach to blind separation and blind deconvolution", 1995

²Hyvärinen, "Fast and robust fixed-point algorithms for independent component analysis", 1999

Maximum likelihood ICA

$$\mathcal{L}(W) = -\log|\det W| + \sum_{i=1}^N \hat{E}[-\log(p_i([WX]_{it}))]$$

- ▶ Find $W = \arg \min \mathcal{L}(W)$ (maximum likelihood estimator)
- ▶ Solved by Infomax¹ with fixed densities ($\forall i, p_i = p$)

Orthogonal constraint:

- ▶ Find $W = \arg \min \mathcal{L}(W)$ subject to $WW^\top = I_N$.
- ▶ Solved by Fastica² with a binary switch between densities ($\forall i, \log(p_i) = \pm \log(p)$)

¹Bell, Sejnowski, "An information-maximization approach to blind separation and blind deconvolution", 1995

²Hyvärinen, "Fast and robust fixed-point algorithms for independent component analysis", 1999

An optimization problem

Geometry of the cost function

$$\mathcal{L}(W) = -\log|\det W| + \sum_{i=1}^N \hat{E}[-\log(p_i([WX]_{it}))]$$

- ▶ Optimization on the set of invertible matrices
- ▶ Non-Convex problem

Relative (multiplicative) update:

$$W \leftarrow \exp(\mathcal{E})W, \quad \mathcal{E} \in \mathbb{R}^{N \times N}$$

- ▶ W remains invertible
- ▶ Easy to enforce orthogonal constraint: take \mathcal{E} antisymmetric

Derivatives of the cost function

$$\mathcal{L}(W) = -\log|\det W| + \sum_{i=1}^N \hat{E}[-\log(p_i([WX]_{it}))]$$

Second order expansion:

$$\boxed{\mathcal{L}(\exp(\mathcal{E})W) = \mathcal{L}(W) + \langle G|\mathcal{E} \rangle + \frac{1}{2}\langle \mathcal{E}|H|\mathcal{E} \rangle + \mathcal{O}(\|\mathcal{E}\|^3)}$$

$$G \in \mathbb{R}^{N \times N}, H \in \mathbb{R}^{N \times N \times N \times N}$$

Define $\psi_i(\cdot) = -\log(p_i(\cdot))' = -\frac{p_i'(\cdot)}{p_i(\cdot)}$, $Y = WX$.

- ▶ $G_{ij} = \hat{E}[\psi_i(y_i)y_j] - \delta_{ij}$ $(\delta_{ij} = 1 \text{ if } i = j, 0 \text{ else})$
- ▶ $H_{ijkl} = \delta_{il}\delta_{jk}\hat{E}[\psi_i(y_i)y_i] + \delta_{ik}\hat{E}[\psi_i'(y_i)y_jy_l]$

Derivatives of the cost function

$$\mathcal{L}(W) = -\log|\det W| + \sum_{i=1}^N \hat{E}[-\log(p_i([WX]_{it}))]$$

Second order expansion:

$$\mathcal{L}(\exp(\mathcal{E})W) = \mathcal{L}(W) + \langle G|\mathcal{E} \rangle + \frac{1}{2}\langle \mathcal{E}|H|\mathcal{E} \rangle + \mathcal{O}(\|\mathcal{E}\|^3)$$

$$G \in \mathbb{R}^{N \times N}, H \in \mathbb{R}^{N \times N \times N \times N}$$

Define $\psi_i(\cdot) = -\log(p_i(\cdot))' = -\frac{p_i'(\cdot)}{p_i(\cdot)}$, $Y = WX$.

- ▶ $G_{ij} = \hat{E}[\psi_i(y_i)y_j] - \delta_{ij}$ $(\delta_{ij} = 1 \text{ if } i = j, 0 \text{ else})$
- ▶ $H_{ijkl} = \delta_{il}\delta_{jk}\hat{E}[\psi_i(y_i)y_i] + \delta_{ik}\hat{E}[\psi_i'(y_i)y_jy_l]$

Newton's method?

$$G_{ij} = \hat{E}[\psi_i(y_i)y_j] - \delta_{ij}$$

$$H_{ijkl} = \delta_{il}\delta_{jk}\hat{E}[\psi_i(y_i)y_i] + \delta_{ik}\hat{E}[\psi'_i(y_i)y_jy_l]$$

$$\mathcal{E} = -H^{-1}G$$

$$W \leftarrow \exp(\mathcal{E})W$$

- ▶ Quadratic convergence ☺
- ▶ H is costly to compute: $O(N^3T)$ ☺
- ▶ H is costly to regularize, and invert ☺
- ▶ Not practical

Hessian approximation

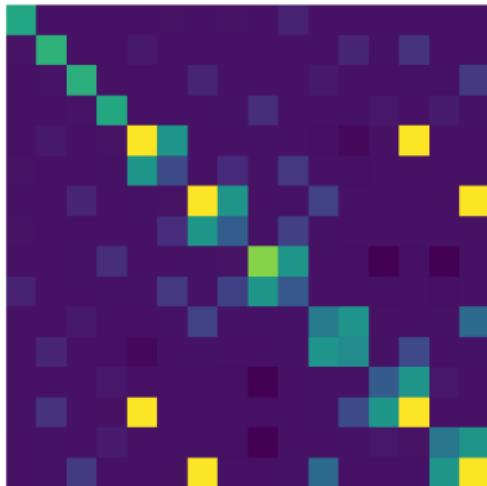
$$H_{ijkl} = \delta_{il}\delta_{jk}\hat{E}[\psi_i(y_i)y_i] + \delta_{ik}\hat{E}[\psi'_i(y_i)y_jy_l]$$

If the signals in Y are **independent** and there are **infinitely many samples**, H simplifies:

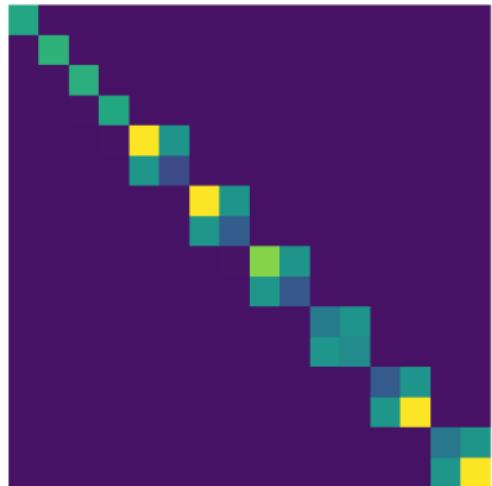
$$\tilde{H}_{ijkl} = \delta_{il}\delta_{jk}\hat{E}[\psi_i(y_i)y_i] + \delta_{ik}\delta_{jl}\hat{E}[\psi'_i(y_i)y_j^2]$$

- ▶ **Cheaper** to compute ($O(N^2T)$, as costly as a gradient) ☺
- ▶ *Block diagonal* structure with blocks of size 2
- ▶ **Easy** to regularize (regularize each block) ☺
- ▶ **Easy** to invert (invert each block) ☺

On a 4 sources problem



H



\tilde{H}

Idea: use \tilde{H} for Newton's method

$$\mathcal{E} = -\tilde{H}^{-1}G$$

$$W \leftarrow \exp(\mathcal{E})W$$

- ▶ Fast-relative Newton³
- ▶ FastICA follows similar iterations with projection ⁴:

$$\mathcal{E} \leftarrow \frac{\mathcal{E} - \mathcal{E}^\top}{2}$$

Key remark: \tilde{H} is a good approximation only when the signals are independent...

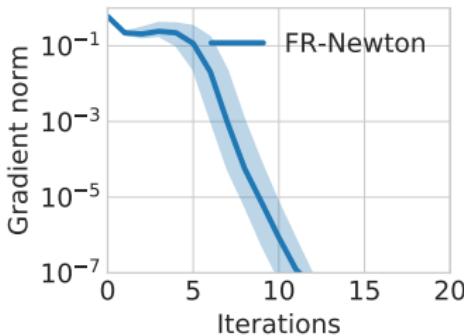
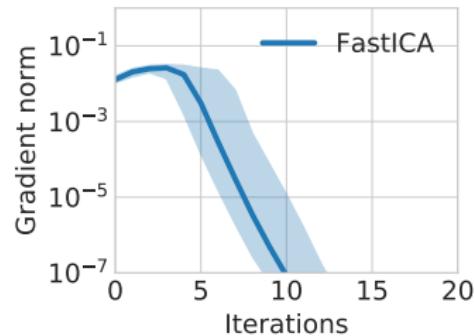
³Zibulevski, "Blind source separation with relative newton method", 2003

⁴Ablin et al., "Faster ICA under orthogonal constraint", 2018

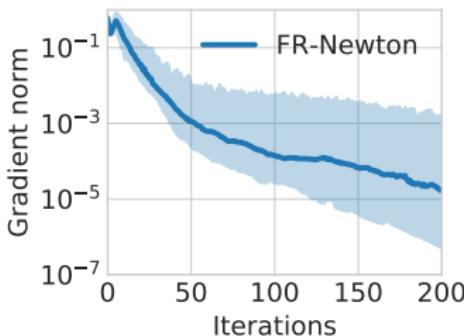
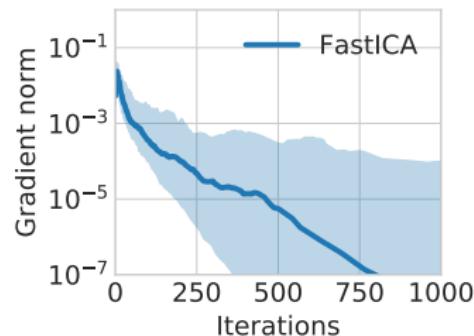
Practical example

Synthetic data \neq real data

- ▶ $N = 8$ independent sources S , $X = AS$



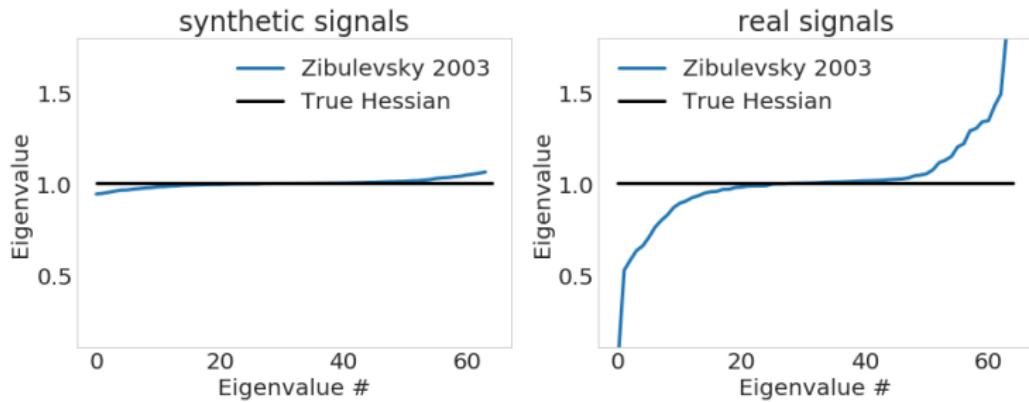
- ▶ $N = 8$ EEG signals, X



What's going on?

- ▶ On the EEG signals, the ICA model $X = AS$ is only true **to some extent**.
- ▶ \tilde{H} is never a really good approximation of H

Spectrum of $\tilde{H}^{-\frac{1}{2}}H\tilde{H}^{-\frac{1}{2}}$:



Bad conditioning

The Picard algorithm

Preconditioning

- ▶ \tilde{H} is not good enough on real signals
- ▶ Use \tilde{H} as a preconditioner

L-BFGS is a widely spread quasi-Newton algorithm

- ▶ Uses the previous iterations W_n, W_{n-1}, \dots and gradient values G_n, G_{n-1}, \dots to build an approximation of H
- ▶ No prior knowledge on the problem
- ▶ Starts from an initial guess λI_d in the standard version
- ▶ Simply use \tilde{H} as initialization!

Orthogonal constraint: Project \mathcal{E} : $\mathcal{E} \leftarrow \frac{\mathcal{E} - \mathcal{E}^\top}{2}$

Preconditioned ICA for Real Data⁵

⁵Ablin et al., "Faster ICA by preconditioning with Hessian approximations", 2017

Preconditioning

- ▶ \tilde{H} is not good enough on real signals
- ▶ Use \tilde{H} as a preconditioner

L-BFGS is a widely spread quasi-Newton algorithm

- ▶ Uses the previous iterations W_n, W_{n-1}, \dots and gradient values G_n, G_{n-1}, \dots to build an approximation of H
- ▶ No prior knowledge on the problem
- ▶ Starts from an initial guess λI_d in the standard version
- ▶ Simply use \tilde{H} as initialization!

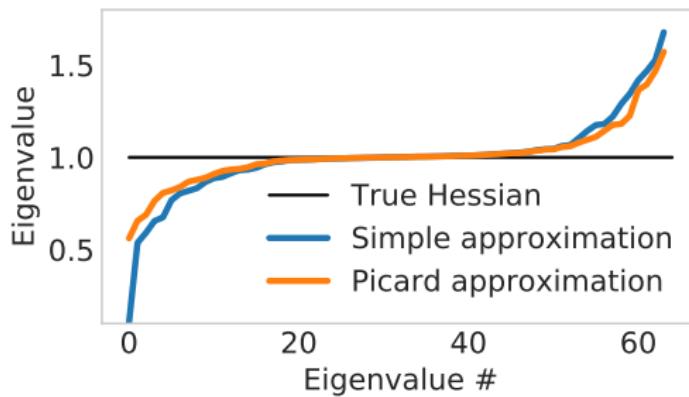
Orthogonal constraint: Project \mathcal{E} : $\mathcal{E} \leftarrow \frac{\mathcal{E} - \mathcal{E}^\top}{2}$

Preconditioned ICA for Real Data⁵

⁵Ablin et al., "Faster ICA by preconditioning with Hessian approximations", 2017

Better conditioning

Picard's Hessian approximation is built upon \tilde{H} , and refined using the past.



Results on real data

Genomics dataset

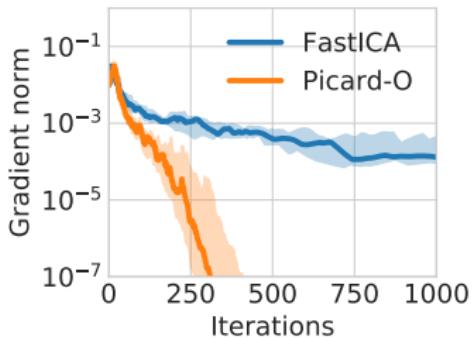
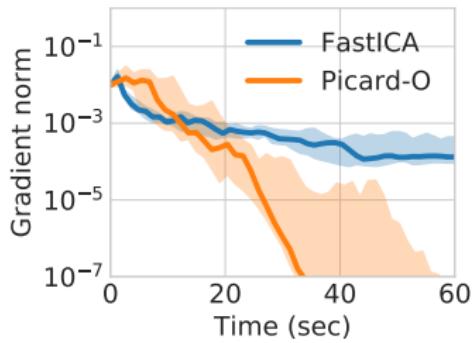
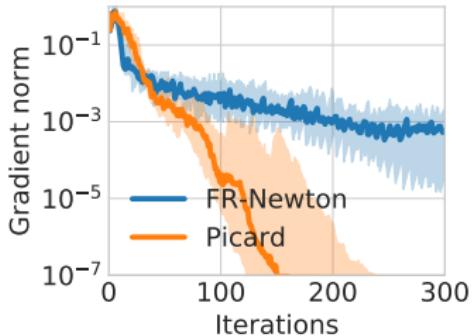
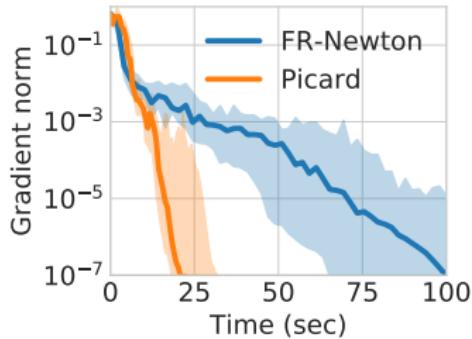
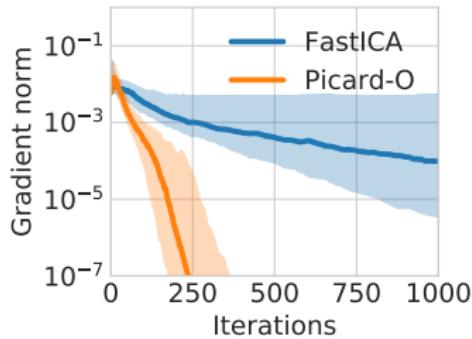
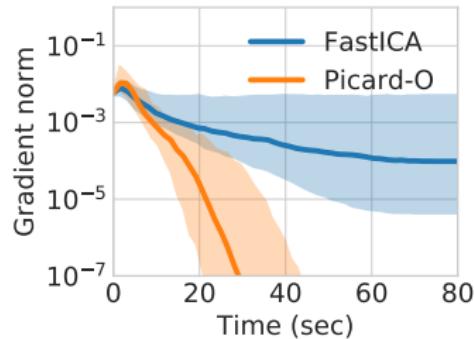
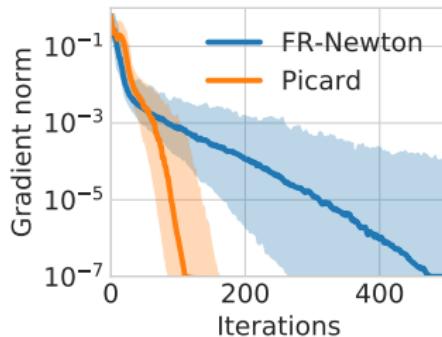
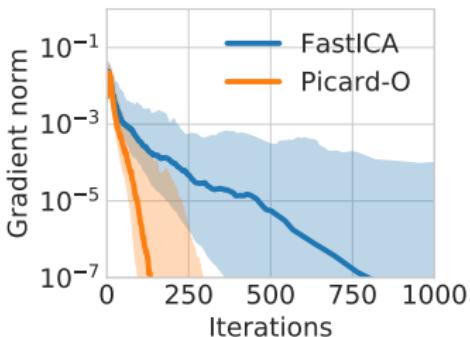
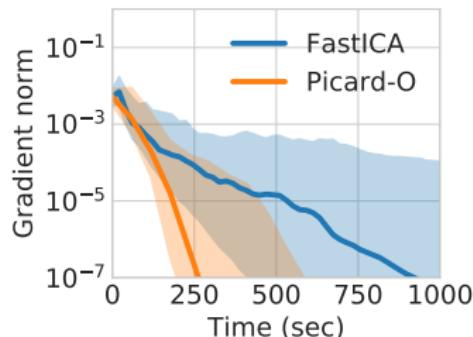
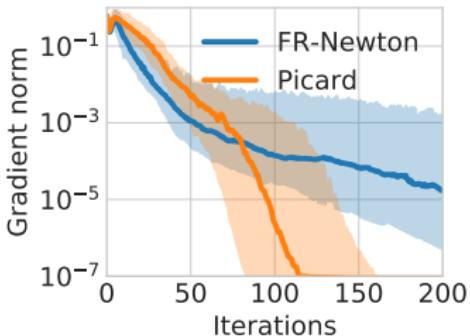
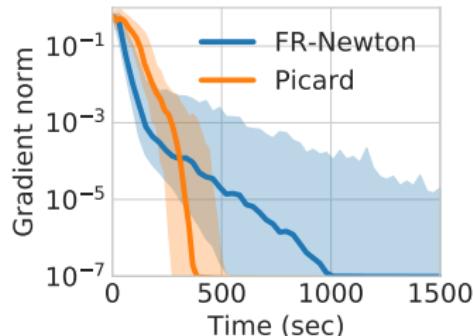


Image patch dataset



EEG dataset



Conclusion

- ▶ Speed of standard algorithms (FastICA, Fast-Relative Newton) critically relies on the independence assumption
- ▶ In a realistic setting, this assumption **never really holds**
- ▶ The Picard algorithm overcomes this issue, finds the same solutions much faster

Python/Matlab/Octave code available online!

<https://github.com/pierreablin/picard>

P. Ablin, J. F. Cardoso and A. Gramfort, "Faster ICA by Preconditioning With Hessian Approximations," in *IEEE TSP*, 2018

Thanks for your attention!

Conclusion

- ▶ Speed of standard algorithms (FastICA, Fast-Relative Newton) critically relies on the independence assumption
- ▶ In a realistic setting, this assumption **never really holds**
- ▶ The Picard algorithm overcomes this issue, finds the same solutions much faster

Python/Matlab/Octave code available online!

<https://github.com/pierreablin/picard>

P. Ablin, J. F. Cardoso and A. Gramfort, "Faster ICA by Preconditioning With Hessian Approximations," in *IEEE TSP*, 2018

Thanks for your attention!