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Motivation

Standard linear ICA solvers, e.g. Infomax/FastICA, are widely used
in applied science.

Slow convergence on real data

I Understand why?
I Provide faster algorithms



Maximum likelihood ICA



The linear ICA model

Observations: N signals of length T , X ∈ RN×T

Generative model: There exists a matrix A ∈ RN×N and
independent signals [s1, · · · , sN ]> = S ∈ RN×T such that:

X = AS

White signals :

We assume CX = 1
T XX

> = IN (decorrelated signals).
Enforce it by X ← C

−1/2
X X
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Likelihood of the model

Density of the sources: si ∼ pi.

Likelihood of the model:

p(X|A) =
T∏

t=1

1
|det(A)|

N∏
i=1

pi([A−1X]it)

Cost function: L(W ) = − 1
T log(p(X|W−1))

L(W ) = − log|detW |+
N∑

i=1
Ê[− log(pi([WX]it))]



Maximum likelihood ICA

L(W ) = − log|detW |+
∑N

i=1 Ê[− log(pi([WX]it))]

I Find W = arg minL(W ) (maximum likelihood estimator)
I Solved by Infomax1 with fixed densities (∀i, pi = p)

Orthogonal constraint:

I Find W = arg minL(W ) subject to WW> = IN .
I Solved by Fastica2 with a binary switch between densities

(∀i, log(pi) = ± log(p))

1Bell, Sejnowski, "An information-maximization approach to blind
separation and blind deconvolution", 1995

2Hyvarinen, "Fast and robust fixed-point algorithms for independent
component analysis", 1999
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An optimization problem



Geometry of the cost function

L(W ) = − log|detW |+
N∑

i=1
Ê[− log(pi([WX]it))]

I Optimization on the set of invertible matrices
I Non-Convex problem

Relative (multiplicative) update:

W ← exp(E)W, E ∈ RN×N

I W remains invertible
I Easy to enforce orthogonal constraint: take E antisymmetric



Derivatives of the cost function

L(W ) = − log|detW |+
∑N

i=1 Ê[− log(pi([WX]it))]

Second order expansion:

L(exp(E)W ) = L(W ) + 〈G|E〉+ 1
2〈E|H|E〉+O(||E||3)

G ∈ RN×N , H ∈ RN×N×N×N

Define ψi(·) = − log(pi(·))′ = −
p′

i(·)
pi(·) , Y = WX.

I Gij = Ê[ψi(yi)yj ]− δij (δij = 1 if i = j, 0 else)
I Hijkl = δilδjkÊ[ψi(yi)yi] + δik Ê[ψ′i(yi)yjyl]
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Newton’s method?

Gij = Ê[ψi(yi)yj ]− δij

Hijkl = δilδjkÊ[ψi(yi)yi] + δik Ê[ψ′i(yi)yjyl]

E = −H−1G

W ← exp(E)W

I Quadratic convergence
I H is costly to compute: O(N3T )
I H is costly to regularize, and invert
I Not practical



Hessian approximation

Hijkl = δilδjkÊ[ψi(yi)yi] + δik Ê[ψ′i(yi)yjyl]

If the signals in Y are independent and there are infinitely many
samples, H simplifies:

H̃ijkl = δilδjkÊ[ψi(yi)yi] + δikδjl Ê[ψ′i(yi)y2
j ]

I Cheaper to compute (O(N2T ), as costly as a gradient)
I Block diagonal structure with blocks of size 2
I Easy to regularize (regularize each block)
I Easy to invert (invert each block)



On a 4 sources problem

H H̃



Idea: use H̃ for Newton’s method

E = −H̃−1G

W ← exp(E)W

I Fast-relative Newton3

I FastICA follows similar iterations with projection 4:

E ← E − E
>

2

Key remark: H̃ is a good approximation only when the signals are
independent...

3Zibulevski, "Blind source separation with relative newton method", 2003
4Ablin et al., "Faster ICA under orthogonal constraint", 2018



Practical example



Synthetic data 6= real data
I N = 8 independent sources S, X = AS
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I N = 8 EEG signals, X
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What’s going on?

I On the EEG signals, the ICA model X = AS is only true to
some extent.

I H̃ is never a really good approximation of H

Spectrum of H̃− 1
2HH̃−

1
2 :

Bad conditioning



The Picard algorithm



Preconditioning

I H̃ is not good enough on real signals
I Use H̃ as a preconditioner

L-BFGS is a widely spread quasi-Newton algorithm
I Uses the previous iterations Wn,Wn−1, · · · and gradient

values Gn, Gn−1, · · · to build an approximation of H
I No prior knowledge on the problem
I Starts from an initial guess λId in the standard version
I Simply use H̃ as initialization!

Orthogonal constraint: Project E : E ← E−E>

2

Preconditioned ICA for Real Data5

5Ablin et al., "Faster ICA by preconditioning with Hessian approximations",
2017



Preconditioning

I H̃ is not good enough on real signals
I Use H̃ as a preconditioner

L-BFGS is a widely spread quasi-Newton algorithm
I Uses the previous iterations Wn,Wn−1, · · · and gradient

values Gn, Gn−1, · · · to build an approximation of H
I No prior knowledge on the problem
I Starts from an initial guess λId in the standard version
I Simply use H̃ as initialization!

Orthogonal constraint: Project E : E ← E−E>

2

Preconditioned ICA for Real Data5

5Ablin et al., "Faster ICA by preconditioning with Hessian approximations",
2017



Better conditioning

Picard’s Hessian approximation is built upon H̃, and refined using
the past.
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Results on real data



Genomics dataset
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Image patch dataset
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EEG dataset
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Conclusion
I Speed of standard algorithms (FastICA, Fast-Relative

Newton) critically relies on the independence assumption
I In a realistic setting, this assumption never really holds
I The Picard algorithm overcomes this issue, finds the same

solutions much faster

Python/Matlab/Octave code available online!

https://github.com/pierreablin/picard

P. Ablin, J. F. Cardoso and A. Gramfort, "Faster ICA by Preconditioning With
Hessian Approximations," in IEEE TSP, 2018

Thanks for your attention!
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