lrrzia—

Accelerating likelihood optimization
for ICA on real signals

Pierre Ablin
INRIA

Joint work with: JF. Cardoso & A. Gramfort

LVA-ICA 2018

Motivation

Standard linear ICA solvers, e.g. Infomax/FastICA, are widely used
in applied science.

Slow convergence on real data

» Understand why?

» Provide faster algorithms

Maximum likelihood ICA

The linear ICA model

P e Seey

Observations: N signals of length 7', X € RV*T

Generative model: There exists a matrix A € RV*N and
independent signals [s1,--- ,sy]T = S € RVXT such that:

X =AS

The linear ICA model

P e Seey

Observations: N signals of length 7', X € RV*T

Generative model: There exists a matrix A € RV*N and
independent signals [s1,--- ,sy]T = S € RVXT such that:

X =AS

White signals :

We assume C'x = %XXT = Iy (decorrelated signals).
Enforce it by X <« C';(I/2X

Likelihood of the model

Density of the sources: s; ~ p;.

Likelihood of the model:
T
p(X|A) = H sz IX it)
t:l

Cost function: L(W) = —= log(p(X|W 1))

=1

N
LW) = —log|det W| + 3 E[—log(pi([WX]ir))]

Maximum likelihood ICA
L(W) = —log|det W| + SN | B[log(p;([W X]ir))]

» Find W = arg min £(IV) (maximum likelihood estimator)
» Solved by Infomax! with fixed densities (Vi, p; = p)

!Bell, Sejnowski, "An information-maximization approach to blind
separation and blind deconvolution", 1995

Maximum likelihood ICA
L(W) = —log|det W| + SN | B[log(p;([W X]ir))]

» Find W = arg min £(IV) (maximum likelihood estimator)
» Solved by Infomax! with fixed densities (Vi, p; = p)

Orthogonal constraint:

» Find W = argmin £(W) subject to WW T = Iy.
» Solved by Fastica® with a binary switch between densities
(i, log(pi) = +1log(p))

!Bell, Sejnowski, "An information-maximization approach to blind
separation and blind deconvolution", 1995

2Hyvarinen, "Fast and robust fixed-point algorithms for independent
component analysis", 1999

An optimization problem

Geometry of the cost function
N A
LW) = —log|det W| +) _ E[~log(pi([W X]i))]
=1

» Optimization on the set of invertible matrices

» Non-Convex problem

Relative (multiplicative) update:

W exp(E)W, € e RV

» W remains invertible

» Easy to enforce orthogonal constraint: take £ antisymmetric

Derivatives of the cost function

L(W) = —log|det W| + YN, E[—log(pi([WX]it))]

Second order expansion:

Lexp(E)W) = LIW) + (G]€) + %<5|H|5> +O(lIENP)

GERNXN HERNXNXNXN

Derivatives of the cost function

L(W) = —log|det W| + YN, E[—log(pi([WX]it))]

Second order expansion:

Lexp(E)W) = LIW) + (G]€) + %<5|H|5> +O(lIENP)

GERNXN HERNXNXNXN

Define () = —log(pi()) = —4J, ¥ = WX.

> Gij = Eli(yi)y;] — 0 (0 =1ifi=7, 0 else)
> Hiji = 0adnE[i(yi)yi) + i B () y;u]

v

v

v

v

Newton’s method?

vi)us] = 0y
= ’LZ(S]kE[i(Yi)yil + i E[@b{(yz)yyyl}

W+ exp(E)W

Quadratic convergence ©
H is costly to compute: O(N3T) ®
H is costly to regularize, and invert ®

Not practical

Hessian approximation

Hijrr = 60k B[(yi)yil + i E[] (i) ;1]

If the signals in Y are independent and there are infinitely many
samples, H simplifies:

Hijra = 66 E[i(yi)yi] + 0indju B[(y:)y)

v

Cheaper to compute (O(N?T), as costly as a gradient) ©

v

Block diagonal structure with blocks of size 2

v

Easy to regularize (regularize each block) ©

v

Easy to invert (invert each block) ©

On a 4 sources problem

Idea: use H for Newton’s method

W+ exp(E)W

» Fast-relative Newton3
» FastICA follows similar iterations with projection #:
E-€&T

5<—2

Key remark: H is a good approximation only when the signals are
independent...

3Zibulevski, "Blind source separation with relative newton method", 2003
“Ablin et al., "Faster ICA under orthogonal constraint", 2018

Practical example

Synthetic data # real data

™\~ FR-Newton

Gradient norm

0 5 10 15 20
Iterations

» N =8 EEG signals, X

€ 107! = FR-Newton
g
= 1073
o
Q2
B 10
Q

-7

10 0 50 100 150 200
Iterations

Gradient norm

Gradient norm

» N = 8 independent sources S, X = AS

—— FastICA

[y
o
I
-

[
o
I
w

[y
o
|

v

._.

1S

4
o

5 10 15 20
Iterations

107! = FastICA
103
1073

1077
0 250 500 750 1000

Iterations

What’s going on?

» On the EEG signals, the ICA model X = AS is only true to
some extent.

» H is never a really good approximation of H

Spectrum of HsHH 3

synthetic signals real signals
—— Zibulevsky 2003 —— Zibulevsky 2003
15 —— True Hessian 1.5 —— True Hessian
@ [
3 =
210 S10
c c
[a
o o
w w
0.5 0.5
0 20 40 60 0 20 40 60
Eigenvalue # Eigenvalue #

Bad conditioning

The Picard algorithm

Preconditioning

» H is not good enough on real signals

» Use H as a preconditioner

L-BFGS is a widely spread quasi-Newton algorithm

Preconditioning

» H is not good enough on real signals
» Use H as a preconditioner
L-BFGS is a widely spread quasi-Newton algorithm
» Uses the previous iterations W,,, W,,_1,--- and gradient
values G,,, Gj,_1, - - to build an approximation of H
» No prior knowledge on the problem
» Starts from an initial guess Al in the standard version
» Simply use H as initialization!

Orthogonal constraint: Project £ : £ « 5_25T

Preconditioned ICA for Real Data®

SAblin et al., "Faster ICA by preconditioning with Hessian approximations",
2017

Better conditioning

Picard’s Hessian approximation is built upon H, and refined using
the past.

1.5
(0]
>
210
g —— True Hessian
1 0.5 = Simple approximation
- Picard approximation
0 20 40 60

Eigenvalue #

Results on real data

Genomics dataset

c 10°% = FastICA
5 ~—= Picard-O
1073
C
2
B 1075
[G]
1077
0 250 500 750 1000
Iterations

-1
£ 10
2
= 1073
C
2
B 1075
(U]

=7

10 0 100 200 300

Iterations

c 10t = FastICA
5 ~— Picard-O
c
=
[
2
©
(G]
-7
107, 20 40 60
Time (sec)

€ 10°! = FR-Newton
5 ~ Picard
=103
c
Q
81075
(G]
1077

25 50 75 100
Time (sec)

Image patch dataset

c 101 = FastICA c 107! = FastICA
5 | ——— Picard-O 5 —— Picard-O
=103 =103 E—
fy fe
© ©
© 10°° © 1075 —
(G] (G]
-7 -7
107 250 500 750 1000 0% 20 40 60 80
Iterations Time (sec)

€ 101 - FR-Newton € 101 = FR-Newton
5 ~ Picard 5 = Picard
c c T
c c
[} [
k] kS
o o
(G] (G]

7
0 200 400 0 20 40 60 80
Iterations Time (sec)

EEG dataset

c 10°% = FastICA
5 ~—= Picard-O
c
c
()
2
©
[G]

1077

0 250 500 750 1000
Iterations

101 - FR-Newton
€ X)
s \.=—— Picard
=103 ’
C
Q@ \
® 105 \
(U]

=7
10 0 50 100 150 200
Iterations

10t = FastICA
——— Picard-O

Gradient norm

0 250 500 750 1000
Time (sec)

€ 101 = FR-Newton
5 ~ = Picard
£ 1073
c
2
81075
Q
1077

0 500 1000
Time (sec)

1500

Conclusion

» Speed of standard algorithms (FastICA, Fast-Relative
Newton) critically relies on the independence assumption

> In a realistic setting, this assumption never really holds
» The Picard algorithm overcomes this issue, finds the same
solutions much faster

Python/Matlab/Octave code available online!

https://github.com /pierreablin /picard

P. Ablin, J. F. Cardoso and A. Gramfort, "Faster ICA by Preconditioning With
Hessian Approximations," in [EEE TSP, 2018

Conclusion

» Speed of standard algorithms (FastICA, Fast-Relative
Newton) critically relies on the independence assumption

> In a realistic setting, this assumption never really holds
» The Picard algorithm overcomes this issue, finds the same
solutions much faster

Python/Matlab/Octave code available online!

https://github.com /pierreablin /picard

P. Ablin, J. F. Cardoso and A. Gramfort, "Faster ICA by Preconditioning With
Hessian Approximations," in [EEE TSP, 2018

Thanks for your attention!

