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Introduction to NMF



Non-negative Matrix Factorization

Matrix factorization technique, just like:
I Dictionnary learning
I Principal Component Analysis
I Independent Component Analysis
I · · ·



NMF: the problem

Let V ∈ Rp×n a matrix of positive entries.
The rank-k NMF of V consists in finding W ∈ Rp×k and
H ∈ Rk×n of positive entries such that (Lee and Seung, 1999):

V 'WH

I Used with k < min(n, p) to obtain a low dimensional
representation of V .

I Lifts some of the usual indeterminacy of the factorization :
WH = (WM−1)(MH) ∀M ∈ Rk×k invertible.

I Only scale and order indeterminacy remains.



Applications of NMF

Applied to data that are instrinsically nonnegative:
I Spectrograms: astronomy (Blanton and Roweis, 2007), music

signal processing(Smaragdis and Brown, 2003),
neuroscience (Rutkowski et al., 2007), · · ·

I Gene expression matrix in biology (Devarajan, 2008)
I Document-term matrix in text mining (Arora et al., 2013)



Algorithms for NMF
NMF as an optimization problem: find W,H solution of :

minimize d(V ||WH) s.t W ≥ 0, H ≥ 0

Several choices for d:
I Frobenius: d(V ||V̂ ) = ||V − V̂ ||2F
I Kullback-Leibler divergence:

d(V ||V̂ ) =
∑
i,j

Vij log(Vij

V̂ij

) + V̂ij − Vij

I Itakura-Saito divergence (Févotte et al., 2009):

d(V ||V̂ ) =
∑
i,j

Vij

V̂ij

− log(Vij

V̂ij

)− 1



Multiplicative update rules

minimize d(V ||WH) s.t W ≥ 0, H ≥ 0

Alternate optimization: Fix W , and update H, then fix H and
update W .
Safe multiplicative update rules, e.g. for Itakura-Saito divergence
(� is element-wise multiplication):

H ← H � W>((WH)�−2 � V )
W>(WH)�−1

W ←W � ((WH)�−2 � V )H>

(WH)�−1H>

Safe = one iteration decreases the cost function.
I What happens to the iterations if the factorization is perfect?
I Equivalent to alternate diagonaly rescaled gradient descent



NMF applied to music
processing



NMF for audio signal processing

NMF is usually applied to the spectrogram of a song.

I Signal s of T samples, sampled at fs.
I Cut it in n frames of size p
I Yields a frames matrix X ∈ Rp×n



Toy example on 2000 samples with p = 500

0 500 1000 1500 2000
Time samples

p = 500



Cut the signal in chunks of size p

0 500 1000 1500 2000
Time samples

p = 500



1st chunk = 1st column of frames matrix X

0 500 1000 1500 2000
Time samples

X0

p = 500



Repeat n times to have a p× n matrix

0 500 1000 1500 2000
Time samples

X1

p = 500



The spectrogram is obtained by taking the
DCT of X

Φdct Discrete Cosine Transform matrix of size p:

Φdct
ij =

√
2
p
· cos[π

p
(i+ 1

2)(j + 1
2)], 0 ≤ i, j ≤ p− 1

It is an orthogonal matrix: ΦΦ> = Ip

I The spectrogram is then V = (ΦdctX)�2

It corresponds to the concatenation of the power spectral densities
for each selected frame.



Spectrogram of some piano chords
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NMF on spectrograms

V 'WH, W ∈ Rp×k, H ∈ Rk×n.

The columns of W correspond to spectral profiles

The rows of H correspond to temporal activations



NMF on spectrograms

V 'WH, W ∈ Rp×k, H ∈ Rk×n.

Recovery of the signal corresponding to a specific column i of W
/row of H is possible using Wiener filtering (Févotte et al., 2009):

Xi = Φ>(W:,iHi,:
WH

� ΦX)

I It isolates single notes in the simple piano case.
I More generally, it is an important tool for musical

unsupervised source separation



Transform learning for
NMF



Transform learning

Traditional NMF for audio signal processing:

minimize d((ΦdctX)�2||WH) s.t W ≥ 0, H ≥ 0

Transform learning (Fagot et al., 2018):

minimize C(Φ, W, H) = d((ΦX)�2||WH)
s.t W ≥ 0, H ≥ 0, ΦΦ> = Ip

I Alternate optimization in Φ, W and H.
I Regular multiplicative updates for W, H.
I For Φ: optimization on the orthogonal manifold (Absil

et al., 2009) ♥



Optimization on the orthogonal manifold
Litterature methods for TL-NMF:

I Projected gradient (Fagot et al., 2018): Φ← Π(Φ− ηG),
where G is the gradient of C w.r.t. Φ and Π is the projection
on the orthogonal manifold.

I Jacobi angles, similar to coordinate descent (Wendt et al.,
2018): Φ← JΦ where J is a Jacobi rotation:

J =



1
. . . 0

cos(θ) · · · − sin(θ)
... . . . ...

sin(θ) · · · cos(θ)

0 . . .
1


Takes 1 day to converge on a regular music track. 1 min for
standard NMF.



But transform learning is useful !

The learned transform Φ captures the frequencies of the signals,
and it obtains better results than NMF for some source separation
tasks.



Our contribution

Faster optimization:
I Optimize directly on the manifold using matrix exponential:

Φ← exp(E)Φ with E + E> = 0 enforces orthogonality
I Use a sparse approximation of the Hessian of C to obtain a

quasi-Newton method



Results: from one day to 10 min
Quasi-Newton (proposed) Projected gradient Jacobi angles
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Thanks for your attention!

Online code:
https://github.com/pierreablin/tlnmf
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