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Introduction to NMF



Non-negative Matrix Factorization

Matrix factorization technique, just like:
» Dictionnary learning
» Principal Component Analysis
» Independent Component Analysis

> ...



NMF: the problem

Let V € RP*™ a matrix of positive entries.
The rank-k NMF of V consists in finding W € RP** and
H € R¥*" of positive entries such that (Lee and Seung, 1999):

V~WH

» Used with k£ < min(n,p) to obtain a low dimensional
representation of V.

> Lifts some of the usual indeterminacy of the factorization :
WH=(WM~Y)(MH) VM € RF** invertible.

» Only scale and order indeterminacy remains.



Applications of NMF

Applied to data that are instrinsically nonnegative:

» Spectrograms: astronomy (Blanton and Roweis, 2007), music
signal processing(Smaragdis and Brown, 2003),
neuroscience (Rutkowski et al., 2007), - - -

» Gene expression matrix in biology (Devarajan, 2008)

» Document-term matrix in text mining (Arora et al., 2013)



Algorithms for NMF

NMF as an optimization problem: find W, H solution of :

minimize d(V|[WH) st W >0,H >0

Several choices for d:
» Frobenius: d(V||[V) = ||V - V|[%
» Kullback-Leibler divergence:
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ij ij
» ltakura-Saito divergence (Févotte et al., 2009):
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Multiplicative update rules

minimize d(V||WH) st W >0,H >0

Alternate optimization: Fix W, and update H, then fix H and
update W.

Safe multiplicative update rules, e.g. for Itakura-Saito divergence
(® is element-wise multiplication):

WTH((WH)?2 oV)

H« H
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Safe = one iteration decreases the cost function.

» What happens to the iterations if the factorization is perfect?

» Equivalent to alternate diagonaly rescaled gradient descent



NMF applied to music
processing



NMF for audio signal processing

NMF is usually applied to the spectrogram of a song.

» Signal s of T samples, sampled at f;.
» Cut it in n frames of size p
> Yields a frames matrix X € RP*"



Toy example on 2000 samples with p = 500
» = 500

0 500 1000 1500 2000
Time samples



Cut the signal in chunks of size p

» = 500

0 500 1000 1500 2000
Time samples



1st chunk = 1st column of frames matrix X

p = 500

0 500 1000 1500 2000
Time samples



Repeat n times to have a p x n matrix

p = 500
X1

0 500 1000 1500 2000
Time samples



The spectrogram is obtained by taking the
DCT of X

P9t Discrete Cosine Transform matrix of size p:

2 .1, 1 .
(b?th:\/;‘COS[p(Z+2)(]+2)]7 0<4,5<p-—-1

It is an orthogonal matrix: |®®' = I,

> The spectrogram is then V = (®dt X )2

It corresponds to the concatenation of the power spectral densities
for each selected frame.
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NMF on spectrograms

V~WH, WeRP*F H ¢ R,
Dictionary W
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The columns of W correspond to spectral profiles

Coefficients H
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The rows of H correspond to temporal activations



NMF on spectrograms

V~WH, W eRPk H c Rk,

Components
0.2
0 + +
-0.2

Recovery of the signal corresponding to a specific column i of W
/row of H is possible using Wiener filtering (Févotte et al., 2009):
X= P (2% 9 dpX
(g ©2X)
> It isolates single notes in the simple piano case.

» More generally, it is an important tool for musical
unsupervised source separation



Transform learning for
NMF



Transform learning

Traditional NMF for audio signal processing:
minimize d((®9*X)?||WH) st W >0,H >0
Transform learning (Fagot et al., 2018):
minimize C(®, W, H) = d((®X)“?||W H)
st W>0,H>0,00" =1,
» Alternate optimization in @, 1V and H.

» Regular multiplicative updates for W, H.

» For ®: optimization on the orthogonal manifold (Absil
et al., 2009) ©



Optimization on the orthogonal manifold

Litterature methods for TL-NMF:

» Projected gradient (Fagot et al., 2018): ® « II(® — nG),
where G is the gradient of C w.r.t. ® and II is the projection
on the orthogonal manifold.

» Jacobi angles, similar to coordinate descent (Wendt et al.,
2018): ® < J® where J is a Jacobi rotation:

1
cos(f) --- —sin(h)

sin(@) .- cos(d)

1

Takes 1 day to converge on a regular music track. 1 min for
standard NMF. ®



But transform learning is useful !

The learned transform ® captures the frequencies of the signals,
and it obtains better results than NMF for some source separation

tasks.

[ Method || SDR(dB) | SIR(B) | SAR(B) |

SNR=-10dB || 95 %o Jsp o | U Gno
Baseline 950 10.00 | 950 1000 | oo oo
IS-NMF 675 682] 500 13.95|4.12 793

TL-NMF 1.73 12.29 | 1344 1333|222 19.20
SNR = 0dB Gp Do | Tp  Gmo | G Gno
Baseline 0.10 0.08| 0.10 0.08| oo 0
IS-NMF 173 069 3.06 532[930 3.65
TL-NMF 650 5811211 9.16 [8.16 9.00

Table 1. Source separation performance.



Our contribution

Faster optimization:
» Optimize directly on the manifold using matrix exponential:
® < exp(£)® with £+ ET = 0 enforces orthogonality

> Use a sparse approximation of the Hessian of C to obtain a
quasi-Newton method



Results: from one day to 10 min

—— Quasi-Newton (proposed) —— Projected gradient

x 108

—— Jacobi angles
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Thanks for your attention!

Online code:
https://github.com/pierreablin /tiInmf
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